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Abstract

Ecological stability is a bewildering broad concept. The most common stability measures

are asymptotic resilience, widely used in theoretical studies, and measures based on tempo-

ral variability, commonly used in empirical studies. We construct measures of invariability,

defined as the inverse of variability, that can be directly compared with asymptotic re-

silience. We show that asymptotic resilience behaves like the invariability of the most

variable species, which is often a rare species close to its extinction boundary. Therefore,

asymptotic resilience displays complete loss of stability with changes in community composi-

tion. In contrast, mean population invariability and ecosystem invariability are insensitive

to rare species and quantify stability consistently whether details of species composition

are considered or not. Invariability provides a consistent framework to predict diversity-

stability relationships that agree with empirical data at population and ecosystem levels.

Our findings can enhance the dialogue between theoretical and empirical stability studies.

1

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/085852doi: bioRxiv preprint first posted online Nov. 11, 2016; 

http://dx.doi.org/10.1101/085852


Introduction

How do ecosystems respond to perturbations? Although this is the driving question of the

decades-old field of ecological stability, the insights gained are still fragmentary (May, 1973;

McCann, 2000; Ives & Carpenter, 2007). The lack of integrative results is at least partly

due to the bewildering extent of the concept of ecological stability (Pimm, 1984; Grimm &

Wissel, 1997; Donohue et al., 2013). By combining a particular type of perturbation (change

in an environmental parameter, biomass addition or removal, species extinction or invasion;

of short, long or lasting duration; of weak or strong intensity; affecting one, several or all

populations, . . . ) with a particular type of system response (immediate, short- or long-

term; at local or larger spatial scale; at population or community level, . . . ), a multitude of

stability notions and measures can be defined and have indeed been used in the literature.

While this conceptual diversity might be seen as a reflection of the complexity of the real

world, it is severely hampering the progress of the field. Without systematic links between

stability notions, it is impossible to integrate the results of individual studies into a more

comprehensive stability theory (Donohue et al., 2013; Arnoldi et al., 2016).

Particularly problematic is the disparity in the way stability is quantified in theoretical and

empirical studies (Donohue et al., 2016). The majority of theoretical studies focuses on the

mathematical notion of asymptotic stability, i.e., whether the system returns after a small

pulse perturbation to its pre-perturbation state, which is most often an equilibrium point

(May, 1973; Allesina & Tang, 2013; Coyte et al., 2015). The associated quantitative stability

measure, asymptotic resilience, measures the long-term rate of return to equilibrium (e.g.,

Neutel et al., 2002; Rooney et al., 2006; Thébault & Fontaine, 2010; Tang et al., 2014).

The larger this return rate, the more stable the system. To avoid confusion, it should be

noted here that another ecological stability notion is also called resilience (Holling, 1973;

Gunderson, 2000), which is however less often quantified in the theoretical literature. On

the other hand, the most popular way of measuring stability in empirical studies is based

on temporal variability, typically using the coefficient of variation of species or community

biomass (Tilman et al., 2006; Jiang & Pu, 2009; Campbell et al., 2011; Gross et al., 2014).

Stability is then inversely related to variability, the idea being that more variable systems

function in a less consistent way. As it is commonly believed that these two stability notions

are intrinsically disconnected, theoretical and empirical approaches to ecological stability

have become widely divergent.

Here we intend to narrow the gap between theoretical and empirical stability studies by

examining the similarities and differences between asymptotic resilience and temporal vari-

ability. Counter to a widespread belief, we emphasize that these two stability notions are

not fundamentally incomparable (Fig. 1). First, several empirical studies have estimated

asymptotic resilience from time-series data that describe the response of an ecosystem to

a natural or artificial pulse perturbation (e.g., Steiner et al., 2006; Sibly et al., 2007). Be-

cause the system progressively approaches the equilibrium, the asymptotic return rate is

often hidden in the naturally occurring fluctuations around the equilibrium. The usual

workaround consists in using the return rate at a shorter time as a proxy. Second, several

theoretical studies have studied the properties of temporal variability (May, 1974; Ives et al.,

1999; Lehman & Tilman, 2000; Loreau & de Mazancourt, 2008). To this end, a persistent,

stochastic perturbation is applied to a model ecosystem and the intensity of its stationary

fluctuations is quantified. In this paper we take this approach a step further by introducing

a variability-based stability measure, which we call invariability, that is directly comparable
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to asymptotic resilience. Our measure coincides with asymptotic resilience for the simplest

systems, but deviates from it for more complex ones.

Thus, resilience and invariability describe the response of a system to different types of

perturbations, i.e., a pulse and a persistent, stochastic perturbation, respectively. The

correspondence between the two concepts can be made explicit, however, by noting that a

persistent perturbation can be seen as being composed of a sequence of pulse perturbations.

Hence, variability is a sum of short- and long-term responses to pulse perturbations (Arnoldi

et al., 2016). But the two stability notions also have fundamentally different properties, as

can be seen from comparing the system’s response for different variables (Fig. 1). The

asymptotic rate of return to equilibrium is the same for each species, and also for total

biomass. Thus, asymptotic resilience can be interpreted as a rigid stability property. In

particular, it does not change across levels of organization (population to ecosystem). In

contrast, the variability of total biomass is typically smaller than that of individual species,

as species fluctuations are averaged out when taking the sum of their biomass. Hence,

variability can be used to distinguish between stability at the population and ecosystem

levels, as has been done in empirical studies (Tilman, 1996; Jiang & Pu, 2009; Campbell

et al., 2011).

We provide novel insights into the relationship between asymptotic resilience and variability-

based stability. We show that asymptotic resilience can be interpreted as an extreme in-

variability measure, namely the invariability of the most variable population. This suggests

that asymptotic resilience should be considered as a population-level stability measure. Fur-

thermore, we show that both the minimal population invariability and asymptotic resilience

drop to zero each time a species is integrated into or lost from the community. This leads to

repeated complete loss of stability along environmental gradients with species turnover, as

is often the case in nature. We show that other, less extreme invariability measures do not

lose stability when species composition changes. We introduce two such measures, one at

the population level and one at the ecosystem level, and show that they quantify stability

consistently across levels of organization.

Finally, we discuss the implications of these findings for the heated debate on the relationship

between diversity and stability (McCann, 2000; Ives & Carpenter, 2007). For competitive

interactions we show that theory predicts different relationships depending on the choice

of the stability measure: asymptotic resilience and population-level invariability suggest

negative diversity-stability relationships, while ecosystem-level invariability show a positive

relationship, in agreement with empirical data (Jiang & Pu, 2009; Campbell et al., 2011;

Gross et al., 2014). Thus, understanding the differences between asymptotic resilience

and invariability sheds new light on the controversies surrounding the diversity-stability

relationship.

Measures of population and ecosystem stability

To introduce the various stability measures, consider an ecosystem model given by a set of

differential equations that describe how the biomass Ni of species i changes through time

due to its interactions with other species and the environment. Assume that the model has

an equilibrium point N∗ (a vector of length n, where n is the number of species) and that

the dynamics in the neighborhood of this equilibrium are described by community matrix A

3

not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was. http://dx.doi.org/10.1101/085852doi: bioRxiv preprint first posted online Nov. 11, 2016; 

http://dx.doi.org/10.1101/085852


0 2 4 6 8 10
−4

−2

0

2

4

6

Time

P
e

rt
u

rb
a

ti
o

n
 s

tr
e

n
g

th

Perturbation

Pulse

0 2 4 6 8 10
0

2

4

6

8

10

Time

B
io

m
a

s
s

System response

Species 1

Species 2

Ecosystem

Resilience

0 2 4 6 8 10
−4

−2

0

2

4

6

Time

P
e

rt
u

rb
a

ti
o

n
 s

tr
e

n
g

th

Persistent

0 2 4 6 8 10
0

2

4

6

8

10

Time

B
io

m
a

s
s

Species 1

Species 2

Ecosystem

Variability

Figure 1: Resilience and variability are related stability measures, but they have different properties.

Most stability measures are based on quantifying the system’s response to a perturbation. (Top) In

case of a pulse perturbation, asymptotic resilience can be measured as the long-term rate of return

to equilibrium. (Bottom) When the peturbation persists over time, temporal variability of system

properties is used to quantify stability. The link between resilience and variability appears clearly

when considering a persistent perturbation as a sequence of pulse perturbations. Nevertheless,

resilience and variability have different properties. For example, the same long-term return rate is

obtained from the time series of individual species biomass (green and orange) and of total biomass

(blue). In contrast, variability of total biomass is typically smaller than species-level variability,

especially when species fluctuate out of synchrony.
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(components Aij , with i = 1, . . . , n and j = 1, . . . , n). Although the equilibrium assumption

is not always appropriate for the study of ecological stability, it is widely adopted both in

theoretical and empirical studies (see also Discussion).

The linear dynamical system with community matrix A is stable if all its eigenvalues have

negative real part. Asymptotic resilience R is then related to the eigenvalue with the largest

real part, also called the dominant eigenvalue λdom,

R = −<e
(
λdom(A)

)
.

It is equal to the asymptotic rate of return to equilibrium after a pulse perturbation. As

mentioned in the introduction, this rate is the same for almost any pulse perturbation and is

typically independent of the dynamical variable (e.g., species or ecosystem biomass) through

which the system response is observed (see Fig. 1 and Appendix S1 for more details). This is

a remarkable property, which sets apart asymptotic resilience from other stability measures.

To construct stability measures based on temporal variability, we apply a stochastic white-

noise perturbation to the deterministic linear dynamical system. For simplicity, we assume

that perturbations are independent between species, and that they act on a per capita basis,

as is typically the case with environmental stochasticity (Lande et al., 2003). As a result,

the perturbation acting on the deterministic system is characterized by the equilibrium

abundance vectorN∗ and a parameter σ2, which measures the intensity of the environmental

fluctuations (see Appendix S1).

In the stationary state the dynamical variables fluctuate with covariance matrix C, which

can be computed from the community matrix A, the equilibrium vector N∗ and the per-

turbation intensity σ2 (see Appendix S1 for details). Species biomass Ni has variance

Var(Ni) = Cii and squared coefficient of variation CV2(Ni) = Cii/(N
∗
i )2, which increase

proportionally to σ2 (for sufficiently small σ; see Fig. S1). We eliminate the latter, trivial

dependence by normalizing with respect to σ2. Hence, we obtain a measure of the vari-

ability of species i, CV2(Ni)/σ
2, and by taking its inverse, a measure of its stability or

“invariability”,

INi
=
σ2

2

1

CV(Ni)2
,

Invariability INi
is entirely determined by equilibrium N∗ and community matrix A. It has

units of 1/time as does asymptotic resilience R, and coincides with asymptotic resilience

for the simplest dynamical systems (see Appendix S1).

To construct population-level stability measures, we combine the invariabilities of individual

populations into a single quantity. Here we introduce two such measures. First, we adopt

the viewpoint that the most unstable component determines the stability of the system,

and we consider the invariability of the most variable population,

Imin =
σ2

2
min
i

1

CV(Ni)2
.

However, the species that has the minimum invariability Imin need not be representative for

the stability properties of the other species in the community. Alternatively, we construct a

measure of population-level invariability by taking the average of the coefficients of variation

weighted by species biomass (Thibaut & Connolly, 2013),

Ipop =
σ2

2

1(∑
i

N∗
i

N∗
tot

CV(Ni)
)2 =

σ2

2

(
N∗

tot

)2(∑
i

√
Var(Ni)

)2 ,
5
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where Ntot =
∑

iNi stands for the total biomass in the ecosystem. The resulting measure

Ipop is called population invariability and satisfies Ipop ≥ Imin. Note that a similar approach

can be used to define population-level stability measures for a restricted set of species (e.g.,

species belonging to a specific trophic level).

To construct an ecosystem-level stability measure, we take the invariability of an aggregated

ecosystem variable. Here we focus on total biomass Ntot =
∑

iNi. Its variance is equal to

Var(Ntot) =
∑

ij Cij with C the covariance matrix of the dynamical variables. Then we

define ecosystem invariability Ieco as

Ieco =
σ2

2

1

CV(Ntot)2
=
σ2

2

(N∗
tot)

2

Var(Ntot)
.

This measure satisfies the inequality Ieco ≥ Ipop, which stems from the fact that population

fluctuations are averaged out at the ecosystem level. When populations fluctuate more

synchronously, ecosystem invariability decreases (relative to population invariability). In

fact, the ratio of population and ecosystem invariability is a commonly used measure of

ecosystem-wide synchrony (Loreau & de Mazancourt, 2008),

Ipop
Ieco

=
Var(Ntot)(∑
i

√
Var(Ni)

)2 .

Stability in the presence of species turnover

Resilience and invariability, which we have concretized as R, Ipop and Ieco, are widely used

in the ecological literature. We now show that these measures lead to qualitatively different

stability patterns, even in simple ecosystems. These differences are particularly striking in

the presence of changes in species composition, as is typically the case when the stability of

different ecosystems is compared. We illustrate this using a simple model, but our findings

are quite general.

Consider a consumer-resource system in which three consumer species compete for two

resources. Consumer species have different resource preferences; in the graphical theory

of resource competition (Tilman, 1982), they have intersecting zero net growth isoclines,

so that equilibrium coexistence depends on resource supply (see Fig. S2). We consider

a gradient of resource supply, along which the equilibrium consumer community changes.

Regions in which a single species dominates alternate with regions in which two species

coexist (Fig. 2a). This type of compositional change patterns is common in studies of

environmental gradients. To model an open ecosystem, we assume that each consumer

species receives a small flow of immigrants. As a result, all species are present at equilibrium,

but only the most competitive one or two (as predicted by resource competition theory) are

common.

Asymptotic resilience R drops to zero every time a consumer species is either lost from the

community or able to invade the community (Fig. 2e). The fact that asymptotic resilience

R is very sensitive to changes in community composition is easily explained from a mathe-

matical point of view: each compositional change corresponds to a transcritical bifurcation,

in which an eigenvalue approaches zero. This eigenvalue is necessarily the dominant one,

so that asymptotic resilience R drops to zero. It is unclear, however, how to interpret this

stability loss from an ecosystem viewpoint. At the bifurcations, community composition
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changes, but this change generally has only a minor effect on the ecosystem, as a rare species

that disappears from the community does not affect the dominant species that largely de-

termine the aggregated property of the ecosystem (e.g., total biomass). Hence, the stability

loss predicted by asymptotic resilience is virtually irrelevant at the ecosystem level.

When white-noise perturbations are applied to consumer dynamics, the resulting fluctua-

tions of population biomass are largest (largest variance) inside the coexistence regions due

to the presence of a competitor (Fig. 2b). The invariability of a species is the lowest (largest

coefficient of variation) at the border of the coexistence region where it either appears or

disappears (Fig. 2c). As a species reaches the point where it is no longer able to persist in

the community, both its mean biomass and its variance decrease linearly to zero, so that its

invariability (the ratio of squared mean to variance) also decreases linearly to zero. Thus, on

its path to disappearance, the rarer the species, the more variable it is. Eventually, at the

point of disappearance, the invariability of this species drops to zero, just like asymptotic

resilience.

As a consequence, asymptotic resilience R and minimum invariability Imin display the same

stability patterns (compare Figs. 2e and 2f). Recall that minimum invariability is defined

as the invariability of the most variable population, that is, the minimum of the curves in

Fig. 2c. A species that is either close to being excluded from the community or close to

being able to invade the community governs the dominant eigenvalue and is also the most

variable species. Both the dominant eigenvalue and that species’ invariability become zero

at its extinction/invasion threshold, so that asymptotic resilience and minimum invariability

have the same behavior close to this threshold. Moreover, because these thresholds occupy

the entire gradient of resource supply, the two stability measures show similar patterns along

the gradient. This similarity suggests that asymptotic resilience is effectively an extreme

version of population-level stability, determined by the most unstable species, which is

almost always rare.

Population invariability Ipop combines the invariabilities of individual populations in a more

balanced way (Fig. 2g). In the regions where a single species dominates, it is equal to the

invariability of the dominant species. In the coexistence regions, it switches smoothly from

the invariability of the species that dominates at one border to the invariability of the

species that dominates at the other border. As a result, the large variability (invariability

dropping to zero) of the species that becomes rare in the coexistence region is not visible

in the pattern of population invariability Ipop. This is in sharp contrast to the patterns of

asymptotic resilience R and minimum invariability Imin, which drop to zero each time the

invariability of an individual population drops to zero.

Ecosystem invariability Ieco quantifies ecosystem-level stability. While mean total biomass

is approximately constant along the gradient, the variance of total biomass decreases in the

coexistence regions (Fig. 2d), so that ecosystem invariability Ieco increases (Fig. 2h). Hence,

the effect of coexistence on Ieco is opposite to its effect on Ipop. Population invariability

Ipop decreases in the coexistence regions, because the coexisting species have smaller mean

biomass and larger variance compared to the regions where they dominate. In contrast,

ecosystem invariability Ieco increases, because species fluctuations partially compensate

each other. Note that both measures Ipop and Ieco depend on common species and change

smoothly along the gradient of resource supply.
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Figure 2: Stability in a resource competition model. (a) Community composition changes along

a gradient of resource supply. Coexistence regions are indicated in grey. Note that mean total

biomass is roughly constant. (b) When applying a white-noise perturbation, the biomass of indi-

vidual populations has larger variance in the coexistence regions than in the regions where a single

species dominates. (c) The invariability of a population is smallest at the border of the coexistence

regions where it is outcompeted by another species. Thin lines represent rare populations that

are maintained due to immigration (sink populations; see also Fig. S3). (d) The variance of total

biomass is smallest in the coexistence regions. (e) Asymptotic resilience R drops to zero at the bor-

ders of the coexistence regions. (f) Minimum variability Imin has a behavior similar to asymptotic

resilience. (g) Population invariability Ipop is smallest in the coexistence regions. (h) Ecosystem

invariability Ieco is largest in the coexistence regions.
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Consistency across levels of organization

The previous section shows that, for a model formulated at the population level, asymptotic

resilience is an extreme version of population-level stability. This suggests that asymptotic

resilience might be used as a measure of stability at the ecosystem level by constructing

a model with aggregated ecosystem-level variables. But it is unclear whether asymptotic

resilience in the aggregated ecosystem-level model will bear any relationship to asymptotic

resilience in the population-level model. Here we examine the consistency of asymptotic

resilience and invariability as measures of stability as the system is scaled up from the

population to the ecosystem level.

To construct an upscaled model of the consumer-resource system, we lump the three con-

sumer biomasses into a single dynamical variable, which can be interpreted as the biomass

of an aggregated consumer that combines the features of the three consumer species (see

Appendix S2 for details). The aggregated consumer uses the resources in the same way as

the species that is most efficient under the prevailing environmental conditions, and thus it

switches between the consumption characteristics of the various species along the gradient.

Asymptotic resilience yields results that differ both qualitatively and quantitatively between

the population- and ecosystem-level models (Fig. 3a). In particular, the stability loss

associated with each extinction or invasion event in the population-level model is absent

from the ecosystem-level model. Moreover, the pattern in the ecosystem-level model is

difficult to interpret. For example, asymptotic resilience predicts a sharp stability increase

close to the borders of the environmental gradient, but it is unclear what mechanism causes

these two peaks. In contrast, ecosystem invariability Ieco has a consistent behavior between

the two models (Fig. 3b). The stability pattern in the ecosystem-level model is similar,

both qualitatively and quantitavely, to that of the population-level model, except that the

humps in the coexistence regions have disappeared. Clearly, this is due to the fact that the

ecosystem-level model does not contain the details of individual consumer species and their

coexistence.

Thus, ecosystem invariability has a consistent and predictable behavior in the model up-

scaling, while the pattern predicted by asymptotic resilience undergoes drastic changes with

upscaling.

Diversity-stability relationships

We build now upon the results of the previous sections to connect different predictions

about the diversity-stability relationship. By taking into account the level of organiza-

tion addressed by the various stability measures, we obtain a framework that coherently

integrates the different theoretical predictions and that is consistent with empirical data.

Random interaction models have been widely used in theoretical studies of ecological sta-

bility since May’s (1973) seminal work. Most of these studies generate random community

matrices and study their stability properties, e.g., the proportion of stable matrices, or the

asymptotic resilience R of those matrices that are stable. However, the invariability mea-

sures we have introduced also depend on the equilibrium abundance vector N∗. Therefore,

we take a step back from the standard approach, and start by generating random interaction
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Figure 3: Are stability measures consistent across levels of organization? Consumer species in the

resource competition model (Fig. 2) are aggregated into a single consumer variable. (a) Asymptotic

resilience R changes dramatically between the population-level (dark thin line) and ecosystem-level

(light thick line) models. (b) Ecosystem invariability Ieco has a similar behavior in the population-

level and ecosystem-level models, although some details related to species coexistence are lost

during model reduction.

matrices. We then look for the equilibrium to which the community dynamics converge.

This ensures that the equilibrium, in which some species may be absent, is stable. We then

quantify the stability of this equilibrium, that is, we determine the equilibrium vector N∗

and the community matrix A, and compute the corresponding stability measures R, Imin,

Ipop and Ieco. We consider a competitive Lotka-Volterra model in which the interspecific

competition coefficients are randomly drawn and mutually independent (see Appendix S4

for details). Fig. 4 shows the dependence of the four stability measures on the number

of species present at equilibrium (the results are qualitatively the same for the number of

species in the initial species pool, see Fig. S4).

The three stability measures that address population-level stability (i.e., R, Imin and Ipop)

predict negative relationships between diversity and stability, while ecosystem invariabil-

ity predicts a positive relationship. This shows that the diversity-stability relationship is

strongly dependent on the level of organization addressed by the measure used to quan-

tify stability. These contrasting patterns have been observed in other competition models

(May, 1974; Lehman & Tilman, 2000; Loreau & de Mazancourt, 2008) and are consistent

with empirical data (Tilman et al., 2006; Jiang & Pu, 2009; Campbell et al., 2011; Gross

et al., 2014).

Furthermore, asymptotic resilience R and minimum invariability Imin display very similar

relationships, in agreement with the results of our resource competition model. Compared

with population invariability Ipop, the dependence of R and Imin on species richness is

stronger and has a larger dispersion. This is consistent with the fact that R and Imin

are extreme measures of population-level stability that drop to zero at the borders of the

stability regions (see Fig. 2).

Discussion

Resilience and variability are the most widely used notions of ecological stability in theo-

retical and empirical studies, respectively. We have shown that they have fundamentally

different properties. The stability patterns across ecosystems predicted by asymptotic re-

silience R are largely determined by changes in the equilibrium community composition
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Figure 4: Stability in a competitive Lotka-Volterra model with random interactions. Dots and

vertical lines show the median and the range from the 5th to the 95th percentile, respectively.

With increasing realized species richness, R, Imin and Ipop decrease, while Ieco increases. Note the

relatively large dispersion of R and Imin, and the smaller dispersion of Ipop and Ieco.

(i.e., the set of persistent species). Because asymptotic resilience drops to zero at each

compositional change, its patterns consist of a sequence of humps in between the zeros,

each hump zooming in on a specific community. In contrast, population invariability Ipop
and ecosystem invariability Ieco are only weakly sensitive to compositional changes, so that

their patterns connect smoothly communities with different composition.

To better understand the differences between resilience and invariability, we have introduced

a very particular invariability measure, minimum invariability Imin, or the invariability of

the most variable species, which displays patterns similar to asymptotic resilience. Both

measures drop to zero at each species gain or loss, so that the similarity is particularly

strong when compositional changes occur repeatedly, e.g., along an environmental gradient.

Although this similarity is not a mathematical equivalence, it strongly suggests that asymp-

totic resilience is a stability measure that generally focuses on the most variable species.

We have also shown that rare species strongly affect these two measures. Although not every

rare species is highly variable, the most variable species in a community is nearly always

rare. For example, a species that is present in a community due to immigration without

being able to maintain itself (a sink population) is typically rare but not necessarily variable

(i.e., it can have a small coefficient of variation; see thin lines in Fig. 2c). Its variability is

high only when it gets close to its invasion threshold. Note that in real-world communities

many rare species are probably occasional immigrants that do not take part in community

dynamics (even if they are close to invasion). In this case, the stability information provided

by asymptotic resilience is of little relevance from an ecosystem perspective.

The family of invariability measures is more flexible than asymptotic resilience. Measures

Ipop and Ieco can be used to consistently quantify stability not only at different levels of

organization within the same model, but also across models formulated at different levels

of organization. Population and ecosystem invariabilities, unlike asymptotic resilience, do

not drop to zero when species composition changes. This might seem surprising, as zero

asymptotic resilience indicates an instability in the system. To understand this, it is im-

portant to recall that the stochastic perturbation inducing system variability acts on a per

capita basis in our model. When a species approaches its extinction or invasion threshold,

the perturbation applied to this species tends to zero, so that the corresponding instability

is less and less excited. As a result, this instability does not show up in the patterns of

population and ecosystem invariabilities (but it does in the pattern of minimum invariabil-

ity). In contrast, due to its rigidity, asymptotic resilience is insensitive to the magnitude

and direction of the perturbation.
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Less extreme versions of asymptotic resilience exist, such as non-asymptotic return rates

(the rates at which a system returns to equilibrium, measured at finite times after a pulse

perturbation) and return times (the times it takes after a pulse perturbation for the system

to return to, and remain within, certain distances from the equilibrium). These alternative

measures, which have been used in empirical studies (e.g., Steiner et al., 2006; Sibly et al.,

2007), are promising from a theoretical viewpoint. Because variability can be seen as a

superposition of short- and long-term responses to pulse perturbations (see Introduction),

one can expect that short-term return rates should have similar properties as the invari-

ability measures we have studied. In particular, short-term return rates do not have the

rigidity of asymptotic resilience. Further work in this direction could enable a closer in-

teraction between theoretical and empirical studies on the response of ecosystems to pulse

perturbations.

The various stability measures we have discussed rest on the equilibrium assumption. Obvi-

ously, this assumption is ingrained in resilience measures based on the return to equilibrium.

In theory, one could extend our analysis to non-equilibrium unperturbed states (e.g., limit

cycles). For variability-based measures, the equilibrium assumption excludes the possiblity

that the dynamics generate variability autonomously (e.g., limit cycles or more complex

attractors). Several theoretical stability studies have quantified stability based on the in-

tensity of internally generated variability (e.g., McCann et al., 1998; Brose et al., 2006). It

is unclear whether the latter variability is related to the externally generated variability we

have studied. While there is some empirical support for internally generated variability, we

believe that externally generated variability continues to deserve research attention, espe-

cially because it is likely more common and it allows the elaboration of a more systematic

theory.

Our findings have some bearing on the theory of tipping points (Scheffer et al., 2009). First,

it is important to note that the extinction/invasion bifurcations we have analyzed are of a

different type than the bifurcations studied in the theory of tipping points. While in the

former bifurcations the equilibrium changes smoothly (the biomass of a species decreases

to zero or increases from zero), the latter bifurcations are characterized by sudden shifts

from one equilibrium to another dynamical state. The theory of tipping points is mainly

concerned with the properties of the equilibrium when approaching the bifurcation, and

in particular, whether the upcoming transition can be detected beforehand (early warning

signals). Usually this detection is based on increased variability: when approaching the bi-

furcation, stability is gradually lost (asymptotic resilience decreases to zero) and variability

diverges. Our work implies that this detection mechanism might fail for extinction/invasion

bifurcations. When approaching such a bifurcation, stability is gradually lost, but the vari-

ability of most system variables does not diverge. This illustrates that bifurcations are not

necessarily accompanied by early warning signals.

Lastly, we have applied these insights to the interpretation of diversity-stability relation-

ships. The random interaction model we have used for this purpose differs from previous

such models, which quantified the probability to encounter stable community matrices (May,

1973; Allesina & Tang, 2013; Coyte et al., 2015). Instead, we studied the stability properties

of communities that are realized (and therefore stable) starting from a larger species pool.

We found consistent relationships depending on the level of organization at which stability is

quantified. Ecosystem-level stability tends to increase with diversity, while population-level

stability tends to decrease with diversity. These predictions agree well with observations

from grasslands (Gross et al., 2014) and other competitive systems (Jiang & Pu, 2009;
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Campbell et al., 2011). It would be interesting to extend this comparison to multi-trophic

systems, for which the empirical patterns are less clear-cut (Jiang & Pu, 2009; Campbell

et al., 2011). The theoretical study of diversity-stability relationships in food webs presents

new challenges, as the predictions of random interaction models are known to be sensitive

to specific structural constraints (Neutel et al., 2002; Rooney et al., 2006; Brose et al., 2006;

Allesina et al., 2015).

By showing that asymptotic resilience behaves like the invariability of the most variable

species, our work translates results obtained in the theoretical literature to the empirical

world. By developing theoretical measures of invariability, our work paves the way to

further develop theory in touch with the empirical world. Further studies might be able

to extend our work to non-equilibrium conditions, or integrate other important stability

measures, such as resistance to perturbations or return times to equilibrium. Meanwhile, the

general relationships between stability measures we have uncovered should be instrumental

in integrating empirical and theoretical approaches to ecological stability.
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