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abstract: Independent species fluctuations are commonly used as
a null hypothesis to test the role of competition and niche differences
between species in community stability. This hypothesis, however, is
unrealistic because it ignores the forces that contribute to synchro-
nization of population dynamics. Here we present a mechanistic
neutral model that describes the dynamics of a community of equiv-
alent species under the joint influence of density dependence,
environmental forcing, and demographic stochasticity. We also in-
troduce a new standardized measure of species synchrony in mul-
tispecies communities. We show that the per capita population
growth rates of equivalent species are strongly synchronized, espe-
cially when endogenous population dynamics are cyclic or chaotic,
while their long-term fluctuations in population sizes are desyn-
chronized by ecological drift. We then generalize our model to non-
neutral dynamics by incorporating temporal and nontemporal forms
of niche differentiation. Niche differentiation consistently decreases
the synchrony of species per capita population growth rates, while
its effects on the synchrony of population sizes are more complex.
Comparing the observed synchrony of species per capita population
growth rates with that predicted by the neutral model potentially
provides a simple test of deterministic asynchrony in a community.

Keywords: environmental variability, stochastic population dynamics,
species synchrony, neutral theory, niche differentiation, interspecific
competition.

Temporal fluctuations in populations and in their envi-
ronment are ubiquitous in natural ecosystems. These fluc-
tuations are thought to play a significant part in the co-
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existence of species (Levins 1979; Armstrong and McGehee
1980; Chesson 2000) and in the stability of aggregate com-
munity or ecosystem properties (McNaughton 1977; Yachi
and Loreau 1999; Loreau 2000; McCann 2000; Loreau et
al. 2001; Hooper et al. 2005). Both species coexistence and
ecosystem stability require some form of temporal niche
differentiation by which different species respond differ-
ently to variations in their environment, such that their
fluctuations are asynchronous and may compensate for
each other through time.

Defining and measuring species asynchrony in multi-
species communities, however, has proved difficult for at
least two reasons. First, there are strong mathematical con-
straints on negative covariations between species, which
makes it difficult to distinguish a species-rich community
in which species show strongly asynchronous fluctuations
from one in which species show stochastic independent
fluctuations on the basis of pairwise measures such as
species covariances and correlations alone (Brown et al.
2004). Second, the null hypothesis against which species
asynchrony should be defined is unclear. The traditional
null hypothesis that most previous studies have used is,
implicitly or explicitly, one in which species fluctuate in-
dependently of each other (Doak et al. 1998; Tilman 1999;
Ernest and Brown 2001; Houlahan et al. 2007; Vasseur and
Gaedke 2007). This hypothesis, however, is biologically
unrealistic because it ignores the forces that contribute to
synchronization of population dynamics.

What is the expected level of species synchrony under
the null hypothesis of no niche differentiation between
species? Does niche differentiation have a consistent sig-
nature on species synchrony, given the potentially complex
dynamics generated by density dependence and environ-
mental forcing? Does interspecific competition desyn-
chronize the population dynamics of coexisting species, as
is often assumed (e.g., Tilman 1999; Houlahan et al. 2007)?
These are fundamental questions that remain, to a large
extent, unanswered by existing theories and that we ex-
amine in this article. Niche theory (Levins 1979; Arm-
strong and McGehee 1980; Chesson 2000) provides key
insights into the conditions for species coexistence in tem-
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porally varying environments, but it has not yet produced
quantitative predictions for species synchrony in multi-
species communities. Neutral theory (Hubbell 2001) pro-
vides elegant predictions for species abundance patterns
and fluctuations in saturated, space-limited communities
of equivalent species, but it considers only population fluc-
tuations driven by demographic stochasticity and ignores
fluctuations driven by density dependence and environ-
mental forcing, which are ubiquitous in natural com-
munities. The theory of stochastic population dynamics
(Lande et al. 2003) provides some solid foundations for
exploring the causes and consequences of species syn-
chrony, but it has so far been applied mainly to the pop-
ulation dynamics of single species. Therefore, there is a
need for new theory that links population dynamics and
community stability.

In this article, we seek to contribute to reaching this
goal in three ways. We first present a neutral model that
describes the dynamics of a community of equivalent spe-
cies. Our neutral model makes the same assumption as
Hubbell’s (2001) that species are demographically equiv-
alent, but it includes three main forces that drive popu-
lation dynamics, that is, intra- and interspecific density
dependence, environmental forcing, and demographic sto-
chasticity. We use this model to derive quantitative pre-
dictions of species synchrony in the absence of niche dif-
ferentiation. These predictions provide an appropriate null
hypothesis to test for the effects of niche differentiation
on species synchrony and ecosystem properties. Second,
we present a new measure of community-wide species
synchrony that avoids some of the drawbacks of previous
measures and allows quantitative comparisons among
communities with different species numbers. Finally, we
develop a nonneutral version of our dynamical model and
use our new measure of synchrony to analyze the effects
of temporal niche differentiation and interspecific com-
petition on species synchrony. The effects of temporal
niche differentiation and interspecific competition on the
stability of community properties will be examined in an-
other contribution (M. Loreau and C. de Mazancourt,
unpublished manuscript).

A Neutral Model of Community Dynamics in
Fluctuating Environments

In this section, we build a neutral model that describes
the stochastic population dynamics of equivalent species
in fluctuating environments. We use this model to predict
the level of species synchrony to be expected in the absence
of niche differences between species.

Assume a set of S equivalent species that are limited by
a common limiting factor and that respond identically to
environmental fluctuations. Let Ni(t) be the population

size or abundance of species i at time t and r (t) pi

be its instantaneous per capita pop-ln N (t � 1) � ln N (t)i i

ulation growth rate at time t. The theory of stochastic
population dynamics predicts that, to a first-order ap-
proximation, the conditional variance of the per capita
population growth rate driven by environmental and de-
mographic stochasticity is

2jd2Var (r (t)FN (t)) p j � , (1)i i e N (t)i

where and are the environmental and demographic2 2j je d

variances, respectively (Lande et al. 2003). Further assume
that community size, , is regulated ac-

S
N (t) p � N (t)T iip1

cording to a simple discrete-time logistic equation with
intrinsic rate of natural increase rm and carrying capacity
K. The population dynamics of each species then obeys
the equation

r (t) p ln N (t � 1) � ln N (t)i i i

N (t) j U (t)T d dip r 1 � � j U (t) � , (2)m e e[ ] �K N (t)i

where Ue(t) and Udi(t) are independent normal variables
with zero mean and unit variance (Lande et al. 2003; Engen
et al. 2005).

Density dependence in the form represented in model
(2) yields a wide range of endogenous dynamical behaviors
for a single population (May and Oster 1976). The de-
terministic dynamical attractors vary from a stable equi-
librium point when to limit cycles when0 ! r ! 2 2 !m

and chaos when (fig. 1). Communityr ! 2.692 r 1 2.692m m

size in model (2) is regulated and has the same deter-
ministic attractors, on which the effects of environmental
forcing and demographic stochasticity are superimposed.
In addition, population sizes of individual species drift
because of demographic stochasticity, as in neutral theory
(Hubbell 2001). For species that do not become extinct,
however, the expected temporal variances, covariances,
and correlations of their per capita population growth rates
can be calculated (app. A). These are, respectively,

2jd2 2 2j p j � j � , (3)r c ei Ñi

2 2Cov (r , r ) p j � j , (4)i j c e

and
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Figure 1: Fluctuations in population sizes (left) and per capita population growth rates (right) in two-species neutral communities. Community
size fluctuates as a result of the combined effects of density dependence, environmental forcing, and demographic stochasticity. Population sizes of
individual species also drift because of demographic stochasticity. Density dependence drives community size toward a stable equilibrium (top), a
stable limit cycle (middle), or a chaotic attractor (bottom), depending on the value of the intrinsic rate of natural increase, rm. The higher the intrinsic
rate of natural increase, the larger the population fluctuations, the stronger the density dependence, and the more synchronous the population
fluctuations. The synchrony of per capita population growth rates (measured by the correlation coefficient rr, right) is always higher than that of
population sizes (measured by the correlation coefficient rN, left) because per capita population growth rates capture the short-term effects of the
forces that govern population dynamics, while fluctuations in population sizes are also affected by long-term ecological drift. Synchrony is so high
in some plots that the lines for the two species are superimposed. These time series were obtained using the Poisson version (see app. D) of the
neutral model with , , , and . Time is measured as the number of generations (time steps) after the start of theK p 20,000 j p 0.01 a p 1 J p 1e e

simulation run.

Cov (r , r )i j
r pr ri j j jr ri j

1
p , (5)

2 2 2 2 2 2˜ ˜� �1 � j /[(j � j )N ] 1 � j /[(j � j )N ]d c e i d c e j

where is the harmonic temporal mean of species i’sÑi

population size, and is the community2 2 2 2j p (r /K ) jc m NT

response variance, defined as the temporal variance of per
capita population growth rates due to regulation of com-
munity size. Since the various species are equivalent,
density-dependent regulation takes place at the aggregate
community level as though there were a single population.
The community response variance quantifies the effects of

these community-level variations on per capita population
growth rates. For values of the intrinsic rate of natural
increase that lead to a stable equilibrium of community
size ( ), the variance of community size is, to a0 ! r ! 2m

first-order approximation (app. B),

2 2 2K (j � j /K)e d2j ≈ , (6)NT ( )r 2 � rm m

and hence the community response variance is approxi-
mately

2 2r (j � j /K)m e d2j ≈ . (7)c 2 � rm
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From equation (7), we can see that the community re-
sponse variance is driven by environmental forcing and
demographic stochasticity, but their effects are amplified
or reduced by density dependence, the strength of which
is controlled by parameter rm. The number of species in
the community affects neither the covariances of per capita
population growth rates (eq. [4]) nor the variance of com-
munity size (eq. [6]). This is logical since the number of
species should have no effect on the properties of the
community as a whole under the hypothesis of equiva-
lence; species are then arbitrary groupings of equivalent
individuals.

Equations (3) and (4) show that there are three additive
components to the temporal variances and covariances of
the per capita population growth rates of equivalent spe-
cies: (1) a component due to endogenous regulation of
community size, (2) a component due to exogenous en-
vironmental forcing, and (3) a component due to de-
mographic stochasticity. The first two components are
shared by all species according to the hypothesis of equiv-
alence; therefore, they are independent of population size,
appear in both variances and covariances, and contribute
to the synchronization of population dynamics. In con-
trast, demographic stochasticity operates mostly at small
population sizes and independently in different species;
therefore, it does not appear in covariances, and it con-
tributes to the desynchronization of population dynamics.
When demographic stochasticity is weak compared with
community regulation and environmental forcing ( 2j �c

), species are expected to fluctuate synchro-2 2 ˜j k j /Ne d i

nously ( ; eq. [5]). In contrast, when communityr ≈ 1r ri j

regulation and environmental forcing are weak compared
with demographic stochasticity ( ), species2 2 2 ˜j � j K j /Nc e d i

are expected to fluctuate independently ( ). Consid-r ≈ 0r ri j

erable fluctuations in community size when the deter-
ministic attractors are cyclic or chaotic result in strongly
synchronous population fluctuations (fig. 1).

The covariances of the per capita population growth
rates of all species pairs are expected to be positive and
identical under the hypothesis of equivalence (eq. [4]).
This is in contrast to Hubbell’s (2001) neutral model,
which predicts negative covariances, on average. The dif-
ference between the two models comes from the fact that
total community size is constant in Hubbell’s, forcing spe-
cies abundances to compensate instantaneously for each
other. By contrast, ours allows for changes in community
size driven by density dependence and environmental sto-
chasticity. These changes affect all species simultaneously
and hence tend to synchronize their dynamics.

In contrast to changes in absolute log abundances (i.e.,
per capita population growth rates), which co-vary posi-
tively, changes in relative log abundances co-vary nega-
tively overall, and their variations are entirely driven by

demographic stochasticity (app. A). Thus, relative log
abundances in our model play the same role as do absolute
abundances in Hubbell’s (2001): they obey the same zero-
sum-game constraint. Changes in community size driven
by density dependence and environmental forcing generate
positive correlations between per capita population growth
rates, while demographic stochasticity generates negative
correlations between changes in relative log abundances.

Correlations between population sizes are intermediate
between these two extremes. Per capita population growth
rates are always more strongly synchronized than popu-
lation sizes (fig. 1) because their fluctuations capture the
short-term effects of the forces that govern population
dynamics from one generation to the next, including the
synchronizing effects of community regulation and envi-
ronmental forcing. Long-term fluctuations in population
sizes are affected by ecological drift, which plays a prom-
inent role when species are equivalent. Together with reg-
ulation of community size, ecological drift results in spe-
cies abundances compensating for each other, thereby
desynchronizing their fluctuations in the long term.

A New Measure of Community-Wide Synchrony

In the previous section, we used the temporal correlation
coefficient as a standardized measure of synchrony be-
tween two species. Although the average correlation co-
efficient has also been used commonly to measure species
synchrony at the community level (Bjørnstad et al. 1999),
this pairwise measure has limitations because the lower
bound on the average correlation coefficient increases
from �1 when there are two species to 0 when there are
many species (app. C). This mathematical property makes
comparisons between communities with different num-
bers of species difficult. Here we present a new standard-
ized measure of community-wide synchrony that makes
such quantitative comparisons possible.

The variance of a community-level variable is directly
related to the synchrony of the corresponding population-
level variables. This variance drops to 0 when there is
perfect asynchrony between species (or no population fluc-
tuations). Its upper bound is determined by the variances
of individual species. Let xi(t) denote any population-level
temporal variable of interest for species i, x (t) pT

the equivalent aggregate community-level vari-
S� x (t)iip1

able, and and their respective temporal variances.2 2j jx xi T

The variance of the community-level variable is maximal
when the population-level variables of all species are per-
fectly correlated through time ( for all species ir p 1x xi j

and j). In this case, since the variance of a sum of variables
is the sum of the variances and covariances of these var-
iables,
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2 2j p j � j j� ��x max x x xT i i j
i i j(i

2

p j j p j . (8)� � �x x xi j i( )
i j i

Therefore, we propose the following statistic to measure
community-wide synchrony:

2jxTJ p . (9)x 2� j( )xi i

This statistic is standardized between 0 (perfect asyn-
chrony) and 1 (perfect synchrony), just like the variance
ratio recently proposed by Vasseur and Gaedke (2007). Its
additional advantage is that it is readily applied to em-
pirical data because it is particularly simple and makes no
specific assumption about the magnitude and distribution
of species abundances and variances.

In the special case where all species variances are equal,
the dependence of our statistic on species richness, S, and
the average temporal correlation coefficient between spe-
cies, , can be made explicit:rx

2 2Sj � S(S � 1)r j 1 � (S � 1)rx x x xi i
J p p . (10)x 2 2S j Sxi

This equation shows that community-wide synchrony, as
measured by Jx, increases with the average temporal cor-
relation between species, which is intuitively satisfactory.
It stays constant at its minimum value of 0 when the
average correlation is at its minimum value, r px

(app. C) and stays constant at its maximum�1/(S � 1)
value of 1 when the average correlation is also maximum
( ). But it decreases with species richness for anyr p 1x

intermediate value of the average correlation when the
latter is kept constant. In particular, it declines as in1/S
the special case where species fluctuate independently
( ). This occurs because our synchrony measurer p 0x

compares the observed community-level variance (nu-
merator of eq. [9]), which is reduced by imperfect cor-
relations between species, with its maximum value when
species are perfectly synchronized (denominator of eq.
[9]). Since the number of covariance terms that contribute
to community-level variance is while the numberS(S � 1)
of variance terms is only S, imperfect correlations between
species play an ever-increasing role as species richness S
increases, which makes community-wide synchrony de-
cline. Note, however, that the average temporal correlation
between species need not stay constant as species richness
varies. Since the minimum value of the average temporal
correlation approaches 0 as species richness increases, any

initially negative value is bound to increase with species
richness (app. C).

Our measure of synchrony can be applied to any tem-
poral variable of interest, including population size, per
capita population growth rate, and species environmental
response. When the temporal variable is population size,
synchrony is simply a standardized measure of the variance
of community size. In the above neutral model, the per
capita population growth rate is a key temporal variable.
The expected synchrony of per capita population growth
rates can then be obtained using equations (3) and (4):

2 2 2 ˜j � j � j /(SN)c e d
J p . (11)r 2

2 2 2 ˜�(1/S) � j � j � j /N[ ( )]c e d ii

When demographic stochasticity is weak compared with
community regulation and environmental forcing ( 2j �c

), species are expected to fluctuate synchro-2 2 ˜j k j /Ne d i

nously, and . At the other extreme, when communityJ ≈ 1r

regulation and environmental forcing are weak compared
with demographic stochasticity ( ), species2 2 2 ˜j � j K j /Nc e d i

are expected to fluctuate independently, and .J ≈ 1/Sr

Thus, even in the absence of any form of niche differ-
entiation, species synchrony is expected to decline as spe-
cies richness increases because of the desynchronizing ef-
fect of demographic stochasticity. This particular source
of asynchrony, however, does not contribute to community
stability. The variance of community size is independent
of the number of species when these are equivalent, as
equation (6) shows, because demographic stochasticity
comes from stochastic variations among individuals, ir-
respective of species identity.

Species Synchrony under Nonneutral Dynamics

Model Formulation and Methods

Having defined a neutral model of community dynamics
and an appropriate measure of community-wide syn-
chrony, we are now ready to examine the deterministic
effects of niche differentiation on species synchrony under
nonneutral dynamics. Our neutral model can easily be
generalized and incorporate niche differences between spe-
cies by relaxing the hypothesis of species equivalence in
two ways: (1) letting interspecific competition be smaller
than intraspecific competition, which generates a nontem-
poral form of niche differentiation that decouples density
dependence in the various species, and (2) allowing species
to have different responses to environmental forcing,
which generates temporal niche differentiation. These two
factors constitute a deterministic source of asynchrony that
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adds to the effects of demographic stochasticity. Our dy-
namical model then becomes

N (t) � a� N (t)i jj(i j U (t)d dir (t) p r 1 � � � (t) �i m i′[ ] �K N (t)i

(1 � a)N (t) � aN (t) j U (t)i T d dip r 1 � � � (t) � .m i′[ ] �K N (t)i

(12)

As in Ives et al. (1999), we assume for simplicity that
all species have equal intrinsic rates of natural increase rm,
carrying capacities K ′, and interspecific competition co-
efficients a ( ). We also remove the effect of com-0 ≤ a ≤ 1
munity size on variability by standardizing species carrying
capacities such that the carrying capacity of the whole
community, K, is independent of a (Ives et al. 1999):

1 � a(S � 1)′K p K. (13)
S

These simplifying assumptions are made to explore the
specific effect of incorporating niche differences between
species into the neutral baseline scenario. Including dif-
ferences among species in their intrinsic rate of natural
increase, carrying capacity, or interspecific competition co-
efficients would undoubtedly be more realistic, but doing
so would confound the effects of niche differentiation with
those of differences in competitive ability.

Environmental stochasticity is assumed to have the same
variance as before, but the species environmental re-2je

sponses �i(t) can now have varying correlations. There are
many different ways to incorporate differences in species
environmental responses when these are negatively cor-
related. We chose two scenarios to generate them: (1) spe-
cies are distributed into two response functional groups
with synchronous fluctuations within groups and asyn-
chronous fluctuations between groups, and (2) all species
pairs have the same expected correlation between species
environmental responses. The two scenarios provide sim-
ilar results, but the results of the second are better behaved;
therefore, we present only the latter here. In this scenario,
the environmental response of species i is defined by

� (t) p bu (t) � u (t), (14)i ei e

where uei(t) is an independent normal variable with 0
mean, is the average of these variables across species,u (t)e

and b is a parameter that governs the synchrony of en-
vironmental responses. Since the environmental variance
is assumed to be identical for all species, the synchrony
of species environmental responses Je is related to their

average correlation by equation (10); that is, J p [1 �e

. When , all species responses are per-(S � 1)r ]/S b p 0e

fectly synchronized ( ); at the other extreme, whenJ p 1e

, species responses are maximally desynchronizedb p 1
( ). Parameter b and the variance of uei(t), , are2J p 0 je uei

adjusted so that the synchrony of environmental responses
is equal to a chosen value Je and the variance of �i(t) is
equal to irrespective of the number of species. Under2je

these constraints,

�J � 1 � J (1 � J )(S � 1) 1e e e
J (eSJ � 1 Seb p , (15)1{0.5 J pe S

and

2je2j p . (16)u 2ei b � (1 � 2b)/S

We provide first-order analytical approximations of the
synchrony of per capita population growth rates and of
the synchrony of population sizes in appendix B. To be
valid, however, these approximations require sufficiently
small population fluctuations, in particular values of the
intrinsic rate of natural increase that lead to a stable equi-
librium of community size ( ). The approxima-0 ! r ! 2m

tion of the synchrony of population sizes further requires
that the interspecific competition coefficient be smaller
than 1. When these conditions were met, we compared
their predictions with simulated data. Although these ap-
proximations are fairly complex, in the limiting case when

they reduce to the much simpler expressiona p 0

2 2J j � j /Ke e d
JF ≈ J F ≈ . (17)r ap0 N ap0 2 2j � j S/Ke d

We analyzed numerically an equivalent model in which
the normal approximation for demographic stochasticity
was replaced with a Poisson process, which amounts to
constraining the demographic variance to be roughly equal
to 1, on average (app. D). Although our Poisson model
constrains the value of the demographic variance, it incor-
porates demographic stochasticity in a more realistic way,
especially at low population sizes where the normal ap-
proximation breaks down. Also, our results hinge mainly
on the relative strength of demographic stochasticity com-
pared with those of community regulation and environ-
mental forcing, and this relative strength can be varied by
simply changing the parameters that govern community
regulation and environmental forcing. Therefore, we present
only the results for the Poisson model below.
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Using this model, we first checked that our analytical
formulas for the neutral model correctly predicted sim-
ulated data, which they did. We then analyzed the effects
of deterministic niche differentiation on the synchrony of
both per capita population growth rates and population
sizes, by decreasing the competition coefficient a (11 val-
ues, uniformly distributed between 0 and 1) and the syn-
chrony of environmental responses Je (nine to 11 values,
depending on the number of species). We also varied other
parameters, in particular the intrinsic rate of natural in-
crease rm (six values: 0.5, 1, 1.5, 2, 2.5, and 3), the envi-
ronmental variance (four values: 0.0001, 0.01, 0.09, and2je

0.25), and the number of species S (five values: 2, 4, 8,
16, and 32). In total, there were 13,200 combinations of
parameter values.

For each of these combinations, we repeated simulations
until we obtained 200 time series in which no species
became extinct. When species extinctions were too fre-
quent, however, we stopped after 120,000 unsuccessful
simulations and analyzed the available set of simulations
without extinctions. Extinctions were infrequent when
species richness was low, except under two circumstances:
(1) when the interspecific competition coefficient was
equal to 1 and the synchrony of environmental responses
was low, and (2) when dynamics were chaotic ( ).r p 3m

Extinction frequency increased sharply with the number
of species and the environmental variance. For a few com-
binations of parameter values, no simulations without ex-
tinctions were available, and hence the corresponding re-
sults are missing. In total, we performed more than 100
million simulations.

Each simulation was run over 300 generations (time
steps), but only the final 200 generations were analyzed,
to remove effects of initial conditions. Each simulation
was initiated with a community in which species abun-
dances were approximately, but not exactly (to allow in-
dependent deterministic chaotic dynamics between spe-
cies), equal to their equilibrium values (total carrying
capacity divided by the number of species). These initial
conditions allowed a stationary regime to be reached after
100 generations (fig. 1). We present only results for one
value of the environmental variance and two values of
species richness below because other values led to quali-
tatively similar results.

Effects of Temporal Niche Differentiation on Synchrony

The synchrony of environmental responses Je provides a
standardized community-wide measure of temporal niche
differentiation between species. Smaller values of this syn-
chrony correspond to greater temporal niche differen-
tiation.

First-order approximations predict that both the syn-

chrony of per capita population growth rates and the syn-
chrony of population sizes should increase linearly with
the synchrony of environmental responses when the in-
terspecific competition coefficient is small (eq. [17]). Nu-
merical simulations show that they do so when the validity
conditions of the first-order approximation are met, that
is, when the intrinsic rate of natural increase is sufficiently
small (fig. 2, left). Thus, as might be expected intuitively,
temporal niche differentiation generally decreases species
synchrony.

The observed patterns deviate increasingly from the pre-
dictions of the first-order approximation as the intrinsic
rate of natural increase increases, thus yielding cyclic or
chaotic population dynamics, and as the interspecific com-
petition coefficient comes close to 1 (fig. 2). In the latter
case, the synchrony of per capita population growth rates
(fig. 2B, 2D) changes in a much more linear and predictable
(less variable) way with the synchrony of environmental
responses than do either the first-order approximation or
the synchrony of population sizes (fig. 2F, 2H). The con-
siderable discrepancy between observed and predicted re-
sults when interspecific competition is strong and environ-
mental responses are strongly asynchronous (fig. 2B, 2D)
appears to be due to ecological drift. Species abundances
are then highly uneven for extended periods of time, thus
preventing species’ compensatory responses from fully op-
erating. As a result, community size fluctuates more widely
than predicted, which enhances the synchronizing role of
shared density dependence in population dynamics.

Effects of Species Richness on Synchrony

First-order approximations predict that increasing species
richness S should decrease species synchrony for a given
value of the synchrony of environmental species responses
when the interspecific competition coefficient is small (eq.
[17]). This occurs because increasing the number of spe-
cies decreases the population size of each species, thus
increasing the role played by demographic stochasticity.
This effect, however, depends on the relative strength of
demographic stochasticity, as measured by , compared2j /Kd

with that of environmental forcing, as measured by the
environmental variance , in the community as a whole.2je

Since demographic stochasticity was fairly weak ( 2j /K Kd

) in our simulations, species richness should have only2je

a weak effect on species synchrony. When the interspecific
competition coefficient and the intrinsic rate of natural
increase are both small, the effect of species richness on
the synchrony of both per capita population growth rates
and population sizes is weak, as expected (fig. 2, left). But
this effect gets stronger as the intrinsic rate of natural
increase increases when the interspecific competition co-
efficient is small (fig. 2, left) because species fluctuations
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Figure 2: Community-wide synchrony (mean � 1 SD) of species per capita population growth rates (A–D) and population sizes (E–H) as a function
of the synchrony of environmental responses, Je, for two values of the interspecific competition coefficient, a (left: ; right: ), and two valuesa p 0 a p 1
of species richness, S (A, B, E, and F: ; C, D, G, and H: ), in the nonneutral Poisson model. The six solid curves in each panel correspondS p 2 S p 8
to different values of rm, as indicated in B. Dashed lines (sometimes confounded with solid lines or with each other) show the corresponding first-order
approximations for the three values of the intrinsic rate of natural increase that yield a stable equilibrium. First-order approximations of the synchrony
of population sizes are not available for (F, H). A few data points are missing in D and H because no simulation without species extinctionsa p 1
was available for these combinations of parameter values. Other parameter values: and .K p 20,000 j p 0.3e

are then more independent, yielding a synchrony that is
closer to (see “Effects of the Intrinsic Rate of Natural1/S
Increase”). Species richness also reduces species synchrony
when interspecific competition is strong and environmen-
tal responses are strongly asynchronous, that is, when eco-
logical drift is important (fig. 2, right), because species
abundances are then less uneven, which reduces the syn-
chronizing effect of shared density dependence discussed
in “Effects of Temporal Niche Differentiation on Syn-
chrony.”

Effects of the Strength of Interspecific
Competition on Synchrony

Contrary to traditional expectations, increasing the
strength of interspecific competition does not desynchro-
nize but instead synchronizes fluctuations in per capita
population growth rates (fig. 3A–3D). As the strength of
interspecific competition increases, density dependence is
increasingly coupled between species and hence contrib-
utes to synchronizing their short-term fluctuations, as cap-
tured by per capita population growth rates.

The effect of interspecific competition on the synchrony
of population sizes is more complex. When the synchrony
of environmental responses is 0, the first-order approxi-
mation predicts that the synchrony of population sizes
should be very low because demographic stochasticity is
weak compared with environmental forcing (eq. [17]). The
full approximation (eq. [B23]) could be used to show that
increasing the interspecific competition coefficient should
generally further decrease the synchrony of population
sizes (as is apparent in fig. 3H). The simulation results
show a relatively flat response, as expected (fig. 3E, 3G),
but it is significantly higher than that predicted when spe-
cies richness is low (fig. 3E). This deviation from the first-
order approximation occurs because when there are only
two species, their relative abundances often differ sub-
stantially through ecological drift, as explained in “Effects
of Species Richness on Synchrony.”

When the intrinsic rate of natural increase is large, the
synchrony of population sizes shows a hump-shaped re-
lationship with the interspecific competition coefficient
(fig. 3E, 3G). This pattern is the result of two counteracting
factors. At first, increasing the strength of interspecific

competition synchronizes population sizes, just as it does
for per capita population growth rates, because it couples
strong density dependence between species. But as the
interspecific competition coefficient approaches 1, species
become increasingly equivalent. Ecological drift then plays
a major role, desynchronizing long-term fluctuations in
population sizes despite the increased synchrony of short-
term fluctuations in per capita population growth rates.
Similar results are obtained when species environmental
responses are strongly synchronized (fig. 3F, 3H).

Effects of the Intrinsic Rate of Natural
Increase on Synchrony

By controlling the strength of density dependence and
hence the dynamical behavior of the community, the in-
trinsic rate of natural increase has strong, complex effects
on community-wide synchrony. As the intrinsic rate of
natural increase increases, the synchrony of per capita pop-
ulation growth rates increases when the synchrony of en-
vironmental responses is low (fig. 3A, 3C), but it decreases
when the synchrony of environmental responses is high
(fig. 3B, 3D). Higher values of the intrinsic rate of natural
increase lead to larger population fluctuations driven by
density dependence, including limit cycles ( ) andr p 2.5m

chaos ( ). The larger these endogenous populationr p 3m

fluctuations, the more they dominate population dynamics
and overwhelm the effects of exogenous environmental
forcing. Thus, counterintuitively, internal instability gen-
erated by strong density dependence acts to synchronize
populations that have asynchronous responses to extrinsic
environmental variations because the latter play a com-
paratively small role in population dynamics (fig. 3A, 3C).
Conversely, internal instability generated by strong density
dependence tends to desynchronize populations that have
synchronous responses to extrinsic environmental varia-
tions for the same reason (fig. 3B, 3D).

As a result, the synchronies of both per capita popu-
lation growth rates and population sizes are less dependent
on the synchrony of environmental responses when the
intrinsic rate of natural increase is higher, yielding larger
population fluctuations (fig. 2). When interspecific com-
petition is weak (fig. 2, left), stronger density dependence
makes species fluctuations more independent (the syn-
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Figure 3: Community-wide synchrony (mean � 1 SD) of species per capita population growth rates (A–D) and population sizes (E–H) as a
function of the interspecific competition coefficient, a, for two values of the synchrony of environmental responses, Je (left: ; right:J p 0 J pe e

), and two values of species richness, S (A, B, E, and F: ; C, D, G, and H: ), in the nonneutral Poisson model. The six solid curves in1 S p 2 S p 8
each panel correspond to different values of rm, as indicated in B. Dashed lines (sometimes confounded with solid lines or with each other) show
the corresponding first-order approximations for the three values of the intrinsic rate of natural increase that yield a stable equilibrium. Other
parameter values: and .K p 20,000 j p 0.3e

chrony of per capita population growth rates and popu-
lation sizes is closer to ) because it tends to act inde-1/S
pendently in the various species. In the special case where
the interspecific competition coefficient and the correla-
tion between species environmental responses are both 0,
species fluctuations are perfectly independent since all the
forces that drive population dynamics (density depen-
dence, environmental forcing, and demographic stochas-
ticity) affect species independently. The synchrony of en-
vironmental responses is then equal to (see “A New1/S
Measure of Community-Wide Synchrony”), and hence the
synchrony of population sizes is also equal to (eq. [17]),1/S
irrespective of the value of the intrinsic rate of natural
increase. As a result, all the curves intersect at the point
( , ) in the left-hand panels of figure 2. By contrast,1/S 1/S
when interspecific competition is strong (fig. 2, right),
stronger density dependence synchronizes species fluctu-
ations because density dependence tends to act on the
community as a whole, thus dragging all species into the
same endogenous fluctuations.

Discussion

Three main forces drive population dynamics: intra- and
interspecific density dependence, environmental forcing,
and demographic stochasticity. Our mechanistic neutral
model provides quantitative predictions of their joint ef-
fects on species synchrony in neutral communities con-
sisting of equivalent species. It predicts that the covariances
and correlations between the per capita population growth
rates of equivalent species are always positive and that their
magnitude depends on the relative strengths of community
regulation and environmental forcing on the one hand,
which tend to synchronize population fluctuations, and
demographic stochasticity on the other hand, which tends
to desynchronize population fluctuations.

It is often assumed, implicitly or explicitly, that species
should fluctuate independently in the absence of niche
differentiation and competition between species (Doak et
al. 1998; Tilman 1999; Ernest and Brown 2001; Houlahan
et al. 2007). In the real world, however, all communities
are subject to fluctuations in their environment. The
growth and fitness of any organism are highly dependent
on abiotic factors such as climate, and environmental fluc-
tuations drive the dynamics of many populations (Steele

1985; Lawton 1988). Moreover, organisms that coexist on
the same resources in the same habitat tend to be affected
by their environment in similar ways. Therefore, in the
absence of niche differentiation, coexisting species should
fluctuate synchronously, not independently. The same is
true when population fluctuations are created by endog-
enous factors. These fluctuations should be synchronized
if they are driven by a common factor of density depen-
dence, such as competition for a shared resource. Our
model shows that even chaotic dynamics, which might be
expected intuitively to be a desynchronizing factor because
of its dependence on initial conditions and its long-term
unpredictability, is in fact a powerful synchronizing factor
because the force that drives this dynamics, that is, density
dependence, acts on all competing species.

Demographic stochasticity is the only factor that in-
trinsically leads to independent fluctuations. But it mainly
affects small populations and seldom occurs without the
simultaneous presence of density dependence and envi-
ronmental forcing. Our neutral model shows that de-
mographic stochasticity alone cannot oppose the synchro-
nizing effects of density dependence and environmental
forcing; it can only reduce their strength. Therefore, in the
presence of interspecific competition and environmental
forcing, which are ubiquitous in natural communities, de-
mographic stochasticity alone is unable to generate in-
dependent species fluctuations.

Although its formalism is very different, our neutral
model may be viewed as a generalization of Hubbell’s
(2001) for communities in which total community size
fluctuates because of both endogenous and exogenous fac-
tors. Hubbell’s neutral model makes the stringent as-
sumption that community size is constant, an assumption
that is violated in many natural communities. Ours relaxes
this assumption, which makes it potentially more relevant
to the analysis of population fluctuations and ecosystem
stability in many natural communities. In our model, spe-
cies relative abundances obey the same zero-sum-game
constraint as do absolute abundances in Hubbell’s model.
But community size is allowed to vary under the influence
of endogenous density dependence and exogenous envi-
ronmental forcing. Because of these variations in com-
munity size, negative correlations between changes in spe-
cies relative abundances are often accompanied by positive
correlations between species absolute abundances. This ex-
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plains the empirical observation that many communities
have positive covariances between species abundances on
average (Houlahan et al. 2007). Such positive covariances,
however, do not indicate that competitive interactions are
absent.

The nonneutral version of our model shows that niche
differentiation has relatively consistent effects on the syn-
chrony of species per capita population growth rates,
whether it occurs through a reduction in the strength of
interspecific competition or through different species re-
sponses to environmental fluctuations. In both cases, in-
creased niche differentiation yields increased asynchrony
of species per capita population growth rates. This result
contradicts the traditional belief that interspecific com-
petition should desynchronize population dynamics (e.g.,
Tilman 1999; Ernest and Brown 2001; Houlahan et al.
2007). This traditional view implicitly considers saturated
communities and ignores fluctuations in community size
driven by endogenous density dependence and exogenous
environmental forcing, very much like the neutral theory.
Our results are different, and more complex, when long-
term fluctuations in species abundances are considered.
Interspecific competition synchronizes fluctuations in spe-
cies abundances when it is relatively weak, but it tends to
desynchronize fluctuations in species abundances when it
is relatively strong, especially when the intrinsic rate of
natural increase is high, generating wide, endogenously
driven population fluctuations.

The discrepancy between per capita population growth
rates and population sizes arises because these variables
are affected by processes that occur on different timescales.
Fluctuations in per capita population growth rates capture
the short-term effects of the forces that govern population
dynamics from one generation to the next, including the
predictable effects of community regulation and environ-
mental forcing. By contrast, fluctuations in population
sizes are affected to a larger extent by long-term processes
such as ecological drift. Counterintuitively, ecological drift
is the factor that explains the desynchronization of long-
term population fluctuations when interspecific compe-
tition is strong, for species then tend to become increas-
ingly equivalent. We suggest that per capita population
growth rates have the twofold advantage over population
sizes of (1) lending themselves to analytical treatment in
the neutral scenario and (2) yielding more consistent, pre-
dictable results in nonneutral scenarios because they are
less affected by long-term trends in population fluctua-
tions. Thus, our results bearing on species synchrony
within a community agree with those of previous studies
on spatial population synchrony across communities
(Bjørnstad et al. 1999).

Like any model, ours have limitations. In particular, we
assumed that environmental stochasticity affects per capita

population growth rates additively. We chose this simple
form because it is a first-order approximation of any form
of environmental stochasticity that acts on a per capita
basis, and it is consistent with a large body of theoretical
and empirical studies in stochastic population dynamics
(Lande et al. 2003). Environmental forcing, however, could
affect population dynamics in different ways, for instance,
though changes in the carrying capacity. We show in ap-
pendix E that this form of environmental stochasticity has
effects identical to that included in our models after ap-
propriate rescaling, as long as population fluctuations are
small. But their effects are likely to be different when pop-
ulation fluctuations are large, especially when endogenous
dynamics are cyclic or chaotic. We standardized the car-
rying capacity of each species, such that the expected value
of community size is independent of the strength of in-
terspecific competition, to remove the confounding effect
of community size on variability (Ives et al. 1999). A side
effect of this assumption, however, is that the population
size of each species is reduced by the presence of other
species, thus implying interspecific competition operating
in a different way. Thus, the interspecific competition co-
efficient in our model controls the degree of coupling of
density dependence among species, but it leaves out any
effect of interspecific competition on population size. We
believe that this is a strength of our model because it allows
a clear interpretation of the results by removing confound-
ing factors, but the corresponding weakness is that our
analysis does not consider some of the effects of compe-
tition. Future studies based on different assumptions and
scenarios will be necessary to make predictions on species
synchrony under more realistic conditions applicable to
real communities.

We suggest that the covariances or synchrony of species
per capita population growth rates predicted by the neutral
model should serve as the proper null hypothesis to test
for nonneutral, deterministic asynchrony driven by niche
differences between species. Since niche differentiation, in
the form of either decreased interspecific competition co-
efficients or decreased correlations between species envi-
ronmental responses, steadily decreases the expected syn-
chrony of species per capita population growth rates,
comparing the observed synchrony of species per capita
population growth rates with the corresponding values
predicted by the neutral model potentially provides a sim-
ple test of deterministic asynchrony in a community.
Quantitative predictions under the null hypothesis, how-
ever, require estimates of demographic and environmental
variances based on individual data on survival and repro-
duction, and these are currently scarce for organisms other
than vertebrates and for entire communities (Lande et al.
2003). We hope that the theory we outline here will stim-
ulate the collection of new empirical data on vital statistics
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as well as the development of new methods to collect and
analyze these data.
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APPENDIX A

Temporal Variances and Covariances in the Neutral Model

The temporal variances and covariances of per capita population growth rates in the neutral model (eq. [2]) are
obtained as follows. For species that do not become extinct, the fluctuations in are bounded. Therefore, theln N (t)i

expected value of their per capita population growth rate, E(ri), is 0 (Levins 1979). Since the expected values of the
random variables associated with environmental and demographic stochasticity, E(Ue) and E(Udi), are also 0,

.E(N ) p KT

Also, since Ue(t) and Udi(t) are independent random variables, they are uncorrelated with each other and with
community size NT(t). Therefore, the temporal variance of the per capita population growth rate of species i reduces
to

2 2 2r j jm N dT2 2j p � j � , (A1)r e2i ˜K Ni

where is the harmonic temporal mean of population size.Ñ p 1/E(1/N )i i

Similarly, the temporal covariance between the per capita population growth rates of two species i and j has three
components. The first two components, those due to regulation of community size and environmental forcing, are
identical in all species and hence equal to the corresponding variance components. The third component, that due to
demographic stochasticity, is 0 because the population fluctuations driven by demographic stochasticity are independent
and uncorrelated. Therefore,

2 2r jm NT 2Cov (r , r ) p � j . (A2)i j e2K

The dynamics of relative log abundances are obtained from equation (2) following the same procedure as in Lande
et al. (2003). Define the relative log abundance of species i at time t as , wheren (t) p ln N (t) � ln N(t) ln N(t) pi i

is the average log abundance at time t, and the change in the relative log abundance of species i
S

(1/S) � ln N (t)iip1

between times t and ast � 1

g(t) p n (t � 1) � n (t) p ln N (t � 1) � ln N(t � 1) � ln N (t) � ln N(t) p r (t) � r(t). (A3)i i i i i i

The long-term temporal variances and covariances of changes in relative log abundances are, then, respectively,

S S S
2 1 2 1 1

2 2 2¯j p Var (r � r) p j � Cov (r , r ) � Cov (r , r ) p j 1 � � (A4)� ��g i r i j j k d2i i [( ) ]˜ ˜S S S N SNjp1 jp1 kp1 i

and

1 1 1
2¯ ¯Cov (g , g ) p Cov (r � r, r � r) p j � � � , (A5)i j i j d ( )˜ ˜ ˜SN SN SNi j
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where is the general harmonic temporal mean of population size across all species.Ñ p 1/E(1/N)
Changes in relative log abundances on average co-vary negatively. This is easily seen when all species have the same

harmonic temporal mean abundance ( for all i); in this case, the temporal correlation of changes in relative˜ ˜N p Ni

log abundances reduces to , that is, the minimum possible correlation compatible with the numberr p �1/(S � 1)g gi j

of species S (app. C). It is also apparent from equations (A4) and (A5) that the variances and covariances of changes
in relative log abundances are entirely driven by demographic stochasticity.

APPENDIX B

First-Order Approximations in the Nonneutral Model

First-order approximations of the temporal variance of community size, the temporal variances and synchrony of
population sizes, and the temporal variances and synchrony of per capita population growth rates in the nonneutral
version of our model are obtained as follows (Ives 1995; Hughes and Roughgarden 1998; Ives and Hughes 2002).
Equation (12) can be rewritten as

(1 � a)N (t) � aN (t) j U (t)i T d diN (t � 1) p N (t) exp r 1 � � � (t) � . (B1)i i m i′{ [ ] }�K N (t)i

Let denote the deviation of species i’s abundance from its equilibrium value in the absencen (t) p N (t) � K/S K/Si i

of environmental and demographic stochasticity. Equation (B1) can be Taylor expanded around n (t) p � (t) pi i

to yield, after dropping terms of order two and higher,U (t) p 0di

n(t � 1) p An(t) � z(t), (B2)

where n(t) is the vector of deviations of species abundances from their equilibrium value, A is the community matrix,
and z(t) is a vector that encapsulates the effects of environmental and demographic stochasticity, whose elements are

K K�z (t) p � (t) � jU (t). (B3)i i d dtS S

The community matrix A has elements aij such that

1 � x i p j
a p , (B4)ij {�ax i ( j

where .x p r /[1 � (S � 1)a]m

Equation (B2) describes a set of S linear equations for the S species. Summing these S equations yields a linear
equation for the dynamics of , the deviation of community size from its equilibrium value:

S
n (t) p � n (t)T iip1

S S
K K�n (t � 1) p (1 � r )n (t) � � (t) � j U (t). (B5)� �T m T i d diS Sip1 ip1

Taking the variance of both sides of this equation, noting that , and solving for2Var (n (t � 1)) p Var (n (t)) p jT T nT

yields2jnT

S S2 2(K/S) Var (� � ) � (K/S)j Var (� U )i d diip1 ip12j p . (B6)n 2T 1 � (1 � r )m

The variance of the sum of species environmental responses �i is equal to the sum of their variances and covariances;
that is,
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S

2 2 2 2Var � p Sj � S(S � 1)r j p S J j , (B7)� i e e e e e( )
ip1

where is the average correlation between species environmental responses and Je is their synchrony as defined byre

equation (9).
Since the random variables Udi are independent, the variance of their sum is simply the sum of their variances, that

is, S. Therefore,

2 2 2K (J j � j /K)e e d2j p . (B8)nT r (2 � r )m m

This variance is positive and finite when , which is a necessary condition for the stability of the equilibrium.0 ! r ! 2m

To obtain first-order approximations of the temporal variances of individual population sizes, equation (B2) has to
be studied in a new set of coordinates. Let l1, … lS be the S eigenvalues of the community matrix A, D a diagonal
matrix that has these S eigenvalues along the main diagonal and 0s elsewhere, and T an matrix whose columnsS # S
are the eigenvectors of A. We then have

�1T AT p D. (B9)

Left-multiplying the two sides of equation (B2) by T�1 and using equation (B9) yields

∗ ∗ ∗n (t � 1) p Dn (t) � z (t), (B10)

where

∗ �1n (t) p T n(t) (B11)

and

∗ �1z (t) p T z(t). (B12)

Equation (B10) describes a set of S linear equations for the S species:

∗ ∗ ∗n (t � 1) p l n (t) � z (t). (B13)i i i i

Taking the covariances of both sides of this equation, noting that ∗ ∗ ∗ ∗Cov [n (t � 1), n (t � 1)] p Cov [n (t), n (t)] pi j i j

, and solving for yields∗ ∗ ∗ ∗Cov (n , n ) Cov (n , n )i j i j

∗ ∗Cov (z , z )i j∗ ∗Cov (n , n ) p . (B14)i j 1 � l li j

Variances are obtained using the same equation by regarding them as a special case of covariances; that is, 2j p∗ni

.∗ ∗Cov (n ,n )i i

The variances of population sizes can then be obtained by returning to the initial set of coordinates using the inverse
of transformation (B11); that is,

∗n (t) p t n (t), (B15)�i ij j
j

where tij are the elements of matrix T. Taking the variance of both sides of this equation yields

2 ∗ ∗j p t t Cov (n , n ). (B16)��n ij ik j ki
j k
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In our linearized system (eq. [B2]), the eigenvalues of the community matrix A are

1 � r i p 1m
l p . (B17)i {l p 1 � (1 � a)x 2 ≤ i ≤ S2

Computing the corresponding eigenvectors and applying equation (B12) gives

1
¯z (t) p z(t) i p 1� jS j∗z (t) p . (B18)i { ∗¯z (t) � z(t) p z (t) � z (t) 2 ≤ i ≤ Si i 1

Taking the variances and covariances of these transformed variables yields, after some algebraic manipulation,

2
2K jd2J j � i p 1e e( ) ( )S K

2
2j p , (B19)∗zi 2K jd2{ (1 � J )j � (S � 1) 2 ≤ i ≤ Se e( ) [ ]S K

0 i p 1, 2 ≤ j ≤ S
∗ ∗

2Cov (z , z ) p . (B20)i j
2K J � 1 je d2{ j � 2 ≤ i, j ≤ Se( ) [( ) ]S S � 1 K

Finally, applying equations (B14) and (B16), we obtain

2 2 2K {[J m � (1 � J )m ]j � [m � (S � 1)m ]j /K}e 2 e 1 e 2 1 d2j p , (B21)n 2i S m m1 2

where

2m p 1 � l . (B22)i i

This variance is positive and finite when and . In the limit when , , hence , and0 ! r ! 2 a ! 1 a p 1 l p 1 m p 0m 2 2

the long-term temporal variance of population sizes becomes infinite because populations are no longer regulated
around an equilibrium size.

A first-order approximation of the community-wide synchrony of population sizes is then easily obtained by sub-
stituting equations (B8) and (B21) into equation (9):

2 2m (J j � j K)2 e e d
J p . (B23)n 2 2[J m � (1 � J )m ]j � [m � (S � 1)m ]j /Ke 2 e 1 e 2 1 d

When , and equation (B23) reduces to equation (17).a p 0 m p m p r (2 � r )1 2 m m

First-order approximations of the temporal variances and community-wide synchrony of per capita population
growth rates can be obtained following a similar procedure. Per capita population growth rates (eq. [12]) are ap-
proximately

xS S�r (t) p � n (t) � a n (t) � � (t) � jU (t). (B24)�i i j i d di[ ]K Kj(i

The temporal variance of this approximation is
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2 2 2x S Sjd2 2 2 2j p {[1 � (S � 1)a ]j � [2 � (S � 2)a](S � 1)a Cov (n , n )} � j � . (B25)r n i j e2i iK K

Using equations (B14) and (B15), we obtain, after some algebraic manipulation,

∗ ∗ 2 2t t Cov (z , z ) K (1 � J )m (m � m )jik jl k l e 1 2 1 d2Cov (n , n ) p p J m � j � . (B26)��i j e 2 e2 {[ ] }1 � l l S m m S � 1 Kk l k l 1 2

Substituting equations (B21) and (B26) into equation (B25) then yields

2 22[(2 � r � axSJ )j � (2 � r � ax)Sj /K]m e e m d2j p . (B27)ri (2 � r )[2 � (1 � a)x]m

Note that, in contrast to the variance of population sizes, this variance is positive and finite when .a p 1
The variance of the sum of per capita population growth rates is approximately

2 2 22 2 2 2 2 ( )2S J j � j /KS r j e e dS jm N dT2 2 2j p Var r (t) p � S J j � p . (B28)�r i e e2T ( ) K K 2 � ri m

A first-order approximation of the community-wide synchrony of population sizes is then easily obtained by substituting
equations (B27) and (B28) into equation (9):

2 2[2 � (1 � a)x](J j � j /K)e e d
J p . (B29)r 2 2(2 � r � axSJ )j � (2 � r � ax)Sj /Km e e m d

When , , and this equation reduces to equation (17).a p 0 x p rm

APPENDIX C

Negative Correlations in Multispecies Communities

Let xi(t) be a population-level variable for species i, the equivalent community-level variable, and
S

x (t) p � x (t)T iip1

and their respective temporal variances. Then2 2j jx xi T

2j p S Var �S Cov , (C1)xT

where is the summed variances of all species and is the summed covariances2S Var p � j S Cov p � � Cov (x , x )x i ji i j(ii

of all species pairs.
Negative relationships among multiple variables are severely constrained (Brown et al. 2004). Because the variance

of the community-level variable is necessarily nonnegative, the minimum value that summed covariances can take2jxT

is that for which this variance vanishes, that is, from equation (C1),

S Cov p �S Var . (C2)min

Since the number of covariance terms is while the number of variance terms is only S in a community ofS(S � 1)
S species, this constraint on summed covariances becomes more and more severe as the number of species increases.
And since the correlation coefficient is a standardized measure of covariance, it also imposes a lower bounds on the
average correlation coefficient.

In particular, when all species have identical variances,

S Cov p r j j p (S � 1)r S Var , (C3)�� x x x x xi j i j
i j(i
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where is the correlation coefficient between xi and xj, and is the average correlation coefficient. The minimumr rx x xi j

value of the average correlation is then, from equation (C2),

�1
r p . (C4)x min S � 1

APPENDIX D

Model with Poisson Demographic Stochasticity

When demographic stochasticity is described by a Poisson process, our model becomes

N (t)i

N (t � 1) p p (t), (D1a)�i ik
kp1

(1 � a)N (t) � aN (t)i T
l (t) p exp r 1 � � � (t) , (D1b)i m i′{ [ ] }K

where pik(t) is a Poisson variable with mean li(t), is the mean finite per capita growth rate of species i
′r (t)il (t) p ei

at time t, and is the corresponding instantaneous per capita growth rate (excluding demographic stochasticity).′r (t)i

When population size is large enough ( ), the sum of Poisson variables in equation (D1a) can be approximatedN (t) k 1i

by a normal variable with a standard deviation equal to the standard error of the mean; that is,

l (t) U (t)i di�N (t � 1) ≈ N (t) l (t) � U (t) p N (t)l (t) 1 � . (D2)i i i di i i[ ] [ ]�N (t) l (t)N (t)i i i

Taking the log of both sides of equation (D2) yields

U (t)di′ln N (t � 1) ≈ ln N (t) � r (t) � ln 1 � , (D3)i i i [ ]�l (t)N (t)i i

and hence, by linear approximation of the last term,

U (t)di′r (t) ≈ r (t) � . (D4)i i �l (t)N (t)i i

Comparing equations (12) and (D4) shows that the demographic variance is approximately equal to in the1/l (t)i

Poisson model. Since (app. A), , and hence , on average.′ 2E(r ) p 0 E(l ) ≈ 1 j p 1i i d

APPENDIX E

Environmental Stochasticity Acting on Carrying Capacity

Assume that environmental stochasticity affects the carrying capacity of each species instead of its per capita population
growth rate directly in the nonneutral model. Since the carrying capacity of each species K ′ was adjusted such that
the carrying capacity of the whole community K is constant, let the magnitude of environmental stochasticity be
proportional to K ′ such that its average per capita effect is constant and independent of population size. Model (12)
then becomes
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(1 � a)N (t) � aN (t) j U (t)i T d diN (t � 1) p N (t) exp r 1 � � . (E1)i i m ′( { } )�K [1 � � (t)] N (t)i i

Taylor expansion of this equation around yields the same first-order approximation as inn (t) p � (t) p U (t) p 0i i di

equation (B2), except for vector z(t), the elements of which are now

Kr Km �z (t) p � (t) � jU (t). (E2)i i d diS S

The only difference with equation (B3) is that environmental stochasticity is multiplied by rm. Thus, all the results
obtained in appendix B for model (12) also apply to model (E1) after rescaling of environmental stochasticity. More
generally, any form of environmental stochasticity that has a constant per capita effect leads to the same first-order
approximation after appropriate rescaling. This makes sense since environmental and demographic stochasticity were
built into our models (2) and (12) in the form of first-order approximations (eq. [1]) in the first place.
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