GROWTH AND DEMOGRAPHY OF POPULATIONS OF
BIOMPHALARIA PFEIFFERI (GASTROPODA, PLANORBIDAE) IN
THE LABORATORY

MICHEL LOREAU1 AND BANOPE BALUKU2
1Laboratoire de Zoologie systématique et d’Ecologie animale, C.P. 160, Université Libre de Bruxelles, 50
av. Roosevelt, B-1050 Bruxelles, Belgium
2Centre de Recherches en Sciences Naturelles, Lwiro, D.S. Bukavu, Zaïre
(Received 10 November 1986)

The freshwater snail Biomphalaria pfeifferi Krauss (Gastropoda, Planorbidae) is one of the
obligate intermediate hosts of Schistosoma mansoni in Eastern Zaïre, were investigated in the laboratory under two
conditions of crowding. Both individual and population growth were depressed by crowding. Crowding reduced growth rate and all the variables and parameters related to reproduction (fecundity, instantaneous birth rate, net reproduction rate), but did not affect maximum size, survivorship, instantaneous death rate and life expectancy. The mechanism involved in these effects is likely to be exploitation competition for especially profitable food items such as diatoms.

INTRODUCTION

The freshwater snail Biomphalaria pfeifferi Krauss (Gastropoda, Planorbidae) is one of the
obligate intermediate hosts of Schistosoma mansoni, a parasitic worm causing bilharziasis
(schistosomiasis) in Zaïre. Bilharziasis is highly endemic in the Ruzizi plain (between longitudes
29° and 30°E. and latitudes 3° and 4°S.). Efficient
efforts to control this disease are conditional
on a thorough knowledge of the ecology and
population dynamics of the host snail.

Several studies on the population dynamics of Biomphalaria pfeifferi have been carried out in the laboratory, focusing on the effects of temperature and calcium concentration on some demographic parameters (Sturrock, 1966; Shiff & Garnett, 1967; Williams, 1970; Harrison et al., 1970; Nduku & Harrison, 1976; de Kock & van Eeden, 1981). On the other hand, to our knowledge there has been no investigation on the effects of population density on growth or demography of Biomphalaria pfeifferi, while these are relatively well documented in other

Bulinus and Biomphalaria species (Chernin &
Michelson, 1957a,b; Shiff, 1964; Jobin & Michelson, 1967; Simões et al., 1974; Thomas &
Benjamin, 1974). Also we do not know of any
detailed field investigation on the population
dynamics of Biomphalaria pfeifferi.

The aim of this project was to carry out a
general study on the population dynamics of
Biomphalaria pfeifferi in Eastern Zaïre, both in
the field and in the laboratory. The present
paper describes the growth and demography of
cohorts reared in the laboratory at Lwiro (long.
28°48’E., lat. 2°15’S., altitude 1740 m), and
compares crowded and uncrowded populations
in order to investigate which aspects are affected
by population density. The population dynamics
in the field will be analysed in another paper
(Loreau & Baluku, 1987).

MATERIAL AND METHODS

Rearing conditions

All rearings were performed in glass aquaria kept
in a lighted and aerated place in the laboratory. The
water used was the tap water of the laboratory, which
is impounded from a near spring and treated by
addition of lime. Its total hardness is 4.12 milli-
equivalents/l (corresponding to 50–70 mg/l of calcium
approximately). Snails were reared at room tem-
perature. Temperature was recorded daily both in
the air and in the water; air temperature fluctuated
between 21°C and 26°C with an average of 23.7°C,
and water temperature fluctuated between 18.5°C and
24°C with an average of 21.8°C.

In order to start the cohorts, 90 adult snails were first
cought in the Virunga stream, close to the laboratory.
They were distributed into three groups of 30 indi-
viduals, which were placed in 55 × 28 × 37 cm aquaria
filled with 201 water. Each group was provided with
10 fresh leaves of Rorippa aquatica L. as food, and 10
stems of Eichornia sp. 30 cm long and 3 cm in diameter
as laying support. Both plants are commonly found in the field and used by Biomphalaria pfeifferi. Although Biomphalaria pfeifferi lay eggs on Rorippa leaves and on the panes of aquaria as well, Eichornia stems were used because they are one of their preferred laying supports and can be easily handled later. The snails started laying eggs after two days. When covered with egg masses, Eichornia stems were cut up in three and placed in 12 x 12 x 6 cm jars filled with 300 ml water. Newly hatched snails were collected daily to constitute the cohorts. Ten groups of respectively 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 eggs were also kept separately in identical jars to obtain data on hatching success.

Two cohorts of 30 individuals (uncrowded) and two cohorts of 300 individuals (crowded) were reared under the same conditions in 25 x 15 x 10 cm aquaria filled with 3.51 water, and followed over almost one year, from March 1984 to February 1985. Every week, the water was changed, two Rorippa fresh leaves were provided in each aquarium (which represents a small amount of food slightly in excess of the requirements ~ for crowded cohorts), snails and fertile as well as non-fertile eggs were counted, and, for 10 snails per cohort, the maximum diameter of the shell was measured under a binocular to the nearest micrometric graduation (0.14 mm).

Growth curve

The maximum diameter of the shell was used as growth variable of Biomphalaria pfeifferi. A good correlation was found with log weight (r = 0.99, 5 d.f., P < 0.001). von Bertalanffy's (1938) model, which is in current use for the biometry of animals with a continuous growth, was fitted to the observed curves to get a predictive model of growth. It is given by the equation:

$$L_x = L_{\text{max}} \left[1 - e^{-K(x-x_0)} \right]$$

where L_x is the size (here, the maximum diameter of the shell) at age x, L_{max} the asymptotical maximum size, K, a constant characteristic of growth rate, x_0, the time prior to the origin when the size was zero (here: minus the duration of the egg stage).

K and L_{max} are determined by the slope and intercept on the x-axis of the regression line of growth rate on size.

Demographic variables and parameters

Demographic variables and parameters were estimated from the standard formulae for a stable age distribution (Pielou, 1977; Vandermeer, 1979). As the species is hermaphrodite, the calculations are simplified by the fact that the whole adult population can be considered as female.

(1) Survivorship

The survivorship at age x is given by $l_x = N_x/N_0$, where N_x is the number of newborn individuals, and N_0, the number of individuals still alive at time x.

As the cohorts were initiated with hatchlings while birth should be considered to occur at egg laying, the age $x = 0$ was reset to the time of egg laying using the known duration of the egg stage, and the number N_0—here, the number of fertile eggs laid—was extrapolated from the number of hatchlings, N_h (h being the age at hatching), using the data on the hatching success, N_h/N_0.

(2) Fecundity

The age-specific mean fecundity in the age class $(x, x + 1)$ was approximated by $m_x = G_{x+1}/N_x$, where G_{x+1} is the number of fertile eggs collected at time $x + 1$ (i.e., laid between x and $x + 1$), and $N_x = (N_x + N_{x+1})/2$ is the approximated number of individuals at age x. This assumes that all births occur at the midpoint of the age class.

(3) Net reproduction rate

The net reproduction rate is given by $R_0 = \int_0^\infty l_x m_x dx$, which was calculated as:

$$R_0 = \sum l_x m_x = \sum (N_x/N_0)(G_{x+1}/N_x) = \sum G_{x+1}/N_0$$

(4) Intrinsic rate of natural increase

The intrinsic rate of natural increase, r, is obtained by solving Lotka's equation for a stable age distribution:

$$\int_0^\infty l_x m_x e^{-rx} dx = 1$$

This was approximated by:

$$\sum G_{x+1} e^{-r} / N_0 = 1$$

and the equation was solved by iterations using a computer.

(5) Instantaneous birth and death rates

The instantaneous birth rate is given by $b = \int_0^\infty l_x m_x e^{-rx} dx$. It was approximated by $b = N_0/\Sigma N_x e^{-r}$. The instantaneous death rate is then simply $d = b - r$.

(6) Mean generation time

The mean generation time is given by $T = \ln R_0/r$.

(7) Life expectancy

The life expectancy of an individual aged x is given by $e_x = \int_x^\infty l_x dx / \ell_x$. For later comparison with field data, two values were of special interest here: the life expectancy at laying, e_0, and the life expectancy at hatching, e_h. By linear approximation of the integral $\int_x^\infty l_x dx$, they were calculated as:

$$e_0 = 0.5 + \sum_{x=1}^\infty N_x/N_0$$

and$$e_h = 0.5 + \sum_{x=1}^\infty N_x/N_h.$$
RESULTS

Egg development

Hatching occurred 12 to 13 days after laying. Hatching success was fairly constant, with a weighted mean of 81.5% and a standard deviation of 1.5%. This mean value was used to calculate the numbers of fertile eggs originally in the cohorts, \(N_0 \).

Growth

Fig. 1 shows the growth curves of the snails under the two experimental conditions. von Bertalanffy’s equations fitted both of them very well. Growth was markedly depressed by crowding, mean shell sizes being significantly different from the 5th week onwards (t-test, \(P < 0.05 \)). Crowding affected growth rate, but it did not decrease the estimated maximum shell size.

Survivorship

The survivorship curves for the four experimental cohorts are shown in Fig. 2. No clear differences appeared between crowded and uncrowded cohorts, but the former seemed to survive better in the long run (after 46 weeks). Thus crowding had at most a weak effect on mortality, and this effect was rather in the direction of decreasing mortality.

Note the symmetric sigmoidal shape of the curves, which does not correspond to Slobodkin’s (1962) classical types.

Fecundity

The fecundity curves are shown in Fig. 3. They almost coincide for cohorts under the same conditions of crowding, whereas curves of cohorts under different conditions are completely separated. Crowding reduced fecundity by more...
than half, although it did not alter the general shape of the curve: all cohorts started laying eggs 13 weeks after hatching and reached a maximum fecundity 8 weeks later. However, the fecundity of the crowded snails declined less sharply after the peak.

DISCUSSION

A quantitative comparison of the present results with other data on the growth and demography of Biomphalaria pfeifferi is very difficult. Among the scarce literature on the subject, Shiff & Garnett’s (1967) study was disturbed by ‘atypical’ migratory behaviours, while Sturrock (1966), Williams (1970), Harrison et al. (1970) and de Kock & van Eeden (1981) do not seem to have calculated demographic parameters properly, for they seem to have started their cohorts several weeks after egg laying. This of course eliminates the high mortality in the early life and shortens the generation time, both

Demographic parameters

Table 1 shows the values of the demographic parameters for the four cohorts. The synthetic parameter r was virtually identical in the cohorts under the same conditions of crowding, but was very sensitive to crowding. Although only two replicates were available under each experimental condition, the decrease of r with crowding was very highly significant. Of the two components of the intrinsic rate of natural increase, only the birth rate was affected by crowding, while the death rate was not. Also, there was a highly significant reduction in the net reproduction rate, but no significant effect on life expectancies. Lastly, crowding tended to lengthen the mean generation time, though this result was not significant.
effects contributing to overestimated \(r \) values. It may also explain why the symmetric sigmoidal shape of survivorship curves did not appear in other laboratory studies; this combination of higher mortality in very young and very old snails was found by Barlow & Muench (1951) and O’Keeffe (1985) in other snail species. Furthermore, experimental conditions have differed widely among studies. The conditions in the present study were suboptimal, both regarding temperature (lower than the optimum around 25–29°C: Sturrock, 1966; Shiff & Garnett, 1967; de Kock & van Eeden, 1981), hardness (higher than the optimum around 12 mg Ca\(^{++}\)/l: Williams, 1970, Harrison et al., 1970), food (inferior to the widely used lettuce: Frank, 1963; Thomas et al., 1983), and perhaps crowding (even our uncrowded populations were denser than in the other studies—but see Thomas & Benjamin, 1974, for the possibility of an Allee effect at lower densities).

Taking all those factors into account, it would seem that the demographic characteristics of our populations were consistent with Harrison et al.’s (1970) data, as well as Shiff & Garnett’s (1967) data for their cohort reared at room temperature. The exceptionally high \(r \) values in de Kock & van Eeden (1981) were probably due to the artificial food on which the snails were fed. We should expect, however, that more precise comparisons between populations would reveal genetic differences in growth and demography. This is suggested e.g. by Harrison et al.’s (1970) data, which show that fecundity of snails from different biotopes tended to be higher under experimental conditions of hardness that were similar to those encountered by the snails in their biotope.

Crowding proves to have marked effects on growth and demography of Biomphalaria pfeifferi—both individual and population growth are depressed by crowding. But the effects are very specific. Crowding affects growth speed and all the aspects or parameters related to reproduction: fecundity, birth rate, net reproduction rate. On the other hand, it does not seem to affect maximum size and all the aspects or parameters related to mortality: survivorship, death.
rate, life expectancies. Similar effects on growth and fecundity have already been documented in other freshwater snail species (Chernin & Michelson, 1957a; Shiff, 1964b; Jobin & Michelson, 1967; Simões et al., 1974), but only a few authors reported the simultaneous lack of effect on mortality (Eisenberg, 1966; Thomas & Benjamin, 1974).

The mechanism involved in the negative intraspecific density-dependent effects on individual and population growth is most likely exploitation competition for food, as stressed by other authors (Eisenberg, 1966; Jobin & Michelson, 1967), though competition may also occur through direct interference, due e.g. to mucus marks or accumulation of metabolic waste. Other chemical alterations of the medium under conditions of crowding, such as depletion of dissolved oxygen and calcium, cannot be excluded, but they seem unlikely in the present study, when the aquaria were kept in an aerated place and the calcium concentration was above the optimum. For it to have an effect, competition for food does not require a complete depletion of food resources. Thomas et al. (1983) showed that relative food shortage is sufficient for the negative effects of competition to be felt on the growth of Biomphalaria glabrata. One of the ways this relative food shortage can be produced is through the limitation of the most profitable food items. This mechanism is quite likely since Biomphalaria pfeifferi in the field proved to feed, not on the plants themselves which are used in the laboratory rearings, but on diatoms which grow on them (Baluku, in prep.). It would then provide the explanation for the specificity of the effects of crowding: the shortage of especially profitable food items such as diatoms can slacken growth and reproduction, but will not increase mortality as long as alternative food is available.

ACKNOWLEDGEMENTS

We wish to thank G. Josens, who suggested this work and read the manuscript. Our thanks to C. Focroulle for preparing the figures. The first author acknowledges a grant as senior research assistant of the National Fund for Scientific Research (Belgium).

REFERENCES

Barlow, C.H. & Muench, H. 1951. Life span and monthly mortality rate of Bulinus truncatus and

