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abstract: Heterotrophic microbial decomposers, such as bacteria
and fungi, immobilize or mineralize inorganic elements, depending
on their elemental composition and that of their organic resource.
This fact has major implications for their interactions with other
consumers of inorganic elements. We combine the stoichiometric
and resource-ratio approaches in a model describing the use by de-
composers of an organic and an inorganic resource containing the
same essential element, to study its consequences on decomposer
interactions and their role in elemental cycling. Our model considers
the elemental composition of organic matter and the principle of its
homeostasis explicitly. New predictions emerge, in particular, (1)
stoichiometric constraints generate a trade-off between the R∗ values
of decomposers for the two resources; (2) they create favorable con-
ditions for the coexistence of decomposers limited by different re-
sources and with different elemental demands; (3) however, com-
bined with conditions on species-specific equilibrium limitation, they
draw decomposers toward colimitation by the organic and inorganic
resources on an evolutionary time scale. Moreover, we derive the
conditions under which decomposers switch from consumption to
excretion of the inorganic resource. We expect our predictions to be
useful in explaining the community structure of decomposers and
their interactions with other consumers of inorganic resources, par-
ticularly primary producers.
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Heterotrophic microbial decomposers, such as bacteria
and fungi, are key components of ecosystems because they
play a major role in the processing of plant detritus, which
is the fate of the majority of primary production (Cebrián
1999). Despite their importance in elemental cycling, de-
composers have long been studied as a black box about
which little was known regarding its internal structure and
dynamics (Tiedje et al. 1999). The explanation for this
state of affairs lies at least partly in the technical difficulties
of separating microbial organisms from their surrounding
environment, because of their small size and their intricate
link to their substrate, and of culturing the most ecolog-
ically relevant strains in vitro. Because of these method-
ological handicaps, parameters and patterns relevant to
modeling interactions among decomposers, or between
decomposers and other trophic levels, are scarcely known.
In recent years, however, technological advances have
made it possible to open the black box and to start studying
decomposers as a community shaped by the specific prop-
erties of its members and by their interactions with each
other and their surroundings (Tiedje et al. 1999; Leckie
2005). Somewhat paradoxically, these new techniques are
generating a wealth of data that are critically in need of a
theoretical framework that allows an understanding of the
relationship between decomposer community structure
and the role of decomposers in ecosystem functioning
(Andrén and Balandreau 1999).

A successful approach that has been used previously to
understand and predict community attributes in other or-
ganisms is the resource-ratio theory (MacArthur 1972; Til-
man 1980). This theory offered a fruitful method for link-
ing the properties of phytoplankton species to processes
among them and to other trophic levels (Tilman 1980;
Daufresne and Loreau 2001b; Grover 2002). The param-
eter R∗, the minimum requirement of a phytoplankton
species for a given resource at equilibrium, is a central
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Figure 1: Diagram of our model representing the growth of a decomposer
population on an inorganic resource and an organic resource containing
two essential elements, carbon (C) and another element (E), in a
chemostat-like system. content of the inorganic resource;E p E E pI V

content of the organic resource; content of the organicE C p carbonV

resource; content of decomposer biomass; contentE p E C p carbonD D

of decomposer biomass; of E; of C;F p flux F p flux a px x,C

CV : EV ratio; CD : ED ratio; rate;constant b p constant l p dilution
gross growth efficiency; E supply concentration;0c p C E p inorganicI

E supply concentration; C supply0 0E p organic C p organicV V

concentration.

parameter in this theory. Determining this parameter for
the various resources and species involved allows one to
predict which species will persist under given resource
supplies and which species will replace others along a re-
source gradient (Tilman 1980). Microbial decomposers
share with plants the ability to assimilate elements that are
essential to their growth, such as nitrogen and phosphorus,
in inorganic form. Simple species-specific parameters like
R∗ would therefore be useful in explaining competitive
interactions of decomposers and ecosystem-level elemental
fluxes. But decomposers differ from primary producers in
their requirement of an organic source of carbon, because
they cannot fix CO2, and in their ability to retain the
essential elements other than carbon contained in this or-
ganic resource. Application of the resource-ratio theory to
organisms that have this ability to use alternative resources
that bind together essential elements in different ratios may
bring interesting new insights and conclusions, even
though the theory was developed mainly for the study of
organisms that use separate essential resources.

Ecological stoichiometry provides another approach to
understanding the use of resources by decomposers. Eco-
logical stoichiometry characterizes the relative growth re-
quirements of decomposers for the various essential ele-
ments and compares them to the relative quantities of
these elements in their resources. The assimilation of the
various resources is constrained in such a way that both
mass balance and homeostasis of elemental composition
are satisfied (Goldman and Dennett 1991; Sterner and
Elser 2002). Because of these homeostatic stoichiometric
constraints, inorganic elements can be either taken up
(immobilized) or excreted (mineralized) by decomposers,
depending on whether the quantity of the elements con-
tained in the organic resources is deficient or exceeds the
requirements of decomposers (Goldman and Dennett
2000; Daufresne and Loreau 2001a).

In this work, we combine the stoichiometric and re-
source-ratio approaches in a model that describes the
growth of decomposers on two resources that contain the
same essential element, one of which is organic and the
other inorganic. Our model considers the elemental com-
position of resources and decomposers explicitly and in-
corporates the principle of homeostasis of elemental com-
position. We use this model to investigate the factors and
constraints that influence the use of the two resources by
decomposers, their consequences on decomposer inter-
specific competition, and the resulting role of decomposers
in elemental cycling.

We use a graphical analysis to examine how the stoi-
chiometry of a decomposer population controls the rel-
ative use of the two resources. We highlight how this stoi-
chiometry, in interaction with external resource supplies,
determines the impact of the decomposer population on

the cycling of the element considered. We then use the
framework established in this analysis to study competitive
interactions among different decomposers. By expanding
the graphical analysis to two decomposer populations and
using resource-ratio theory, we show how stoichiometric
constraints should play a positive role in the coexistence
of decomposers with different elemental compositions but
drive decomposers toward colimitation by the organic and
inorganic resources in the long run.

Model

Model Description

This model represents the growth of a decomposer pop-
ulation on two resources in a chemostat-like ecosystem
(fig. 1). The first resource is made of an essential element,
E, in inorganic form (EI). The second resource contains
the same essential element E (EV), linked to organic carbon
(CV). All compartments experience some loss due to the
constant renewal of a part of the medium, as in a che-
mostat. For simplicity, the loss rate is set to the same value
l for all compartments. Again as in a chemostat, the turn-
over of the medium brings with it fresh resources with a
concentration that is assumed to be constant ( for the0E I

inorganic resource, for the organic carbon, and for0 0C EV V

the organic element). Tables 1 and 2 summarize the sym-
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Table 1: Summary of the symbols used in the model

Symbol Explanation Dimension

Fv Decomposer organic E uptake flux Quantity of E # time�1

Fv, C Decomposer C uptake flux Quantity of C # time�1

Fi Decomposer EI stoichiometric adjustment flux Quantity of E # time�1

ED E stock in decomposers Quantity of E
CD C stock in decomposers Quantity of C
EV E stock in the organic resource Quantity of E
CV C stock in the organic resource Quantity of C
EI Inorganic E stock Quantity of E

0EI Inorganic E supply to decomposers Quantity of E
0EV Organic E supply to decomposers Quantity of E
0CV C supply to decomposers Quantity of C

a Organic resource C : E ratio Quantity of C # quantity of E�1

b Decomposer C : E biomass ratio Quantity of C # quantity of E�1

d Decomposer C : E demand ratio Quantity of C # quantity of E�1

minerdimm Value of d that separates equilibria with mineralization from
equilibria with immobilization

Quantity of C # quantity of E�1

E limdC lim Value of d that separates C-limited from E-limited equilibria Quantity of C # quantity of E�1

washoutdC lim Value of d that separates C-limited equilibria with decomposers
persistent from those with decomposers extinct

Quantity of C # quantity of E�1

E limdwashout Value of d that separates E-limited equilibria with decomposers
persistent from those with decomposers extinct

Quantity of C # quantity of E�1

i EI uptake rate of E-limited decomposers Quantity of E�1 # time�1

v Organic resource uptake rate of C-limited decomposers Quantity of E�1 # time�1

l Ecosystem loss rate Time�1

c Decomposer C gross growth efficiency Quantity of C # quantity of C�1

∗RI EI minimum requirement of decomposers at equilibrium Quantity of E
maxRI Maximal EI minimum requirement of decomposers at equilibrium Quantity of E
∗RV C minimum requirement of decomposers at equilibrium Quantity of C

Note: ; potentially growth-limiting essential element.C p carbon E p another

bols used and the differential equations of the model,
respectively.

The flow of carbon through the system is rather simple:
it is supplied as organic C with a concentration , con-0C V

sumed by decomposers with a flux Fv, C, and lost through
respiration ( ) and turnover of the organic re-[1 � c] Fv, C

source ( ) and decomposers ( ), where c isl # C l # CV D

decomposer gross growth efficiency for C (the percentage
of C ingested that is not respired) and l is the ecosystem
loss rate. The element E is supplied in both an organic
form with a concentration and an inorganic form with0E V

a concentration . It is lost through the turnover of de-0E I

composers ( ) and organic ( ) and inorganicl # E l # ED V

( ) resources. Decomposers consume organic E withl # E I

a flux Fv. The flux between inorganic E and decomposers
(Fi) can go in both directions, depending on the stoichio-
metric properties of the organic resource and of decom-
posers. More generally, the three fluxes Fi, Fv, and Fv, C

are determined by these stoichiometric properties, as we
show next.

A first stoichiometric constraint affects the organic re-
source, which contains C and E in a fixed ratio:

C : E p a. (1)V V

Decomposers are made of the same elements: carbon
(CD) and E (ED). They have a fixed stoichiometric com-
position too:

C : E p b.D D

During the process of growth, decomposers need C and
E in a ratio equal to b to build their biomass, but they
also need some C to produce, through respiration, the
energy necessary to this growth process. Therefore we de-
fine a third C : E ratio, d, which represents what we call
the decomposer C : E demand ratio, integrating the C and
E needed to form biomass and the C needed for energy
production through the formula

b
d p , (2)

c

where b is the C : E ratio of decomposer biomass and c
is decomposer gross growth efficiency for C.
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Table 2: Differential equations of the model describing the growth of a decomposer population using an inorganic
resource containing an essential element E and an organic resource containing both E and carbon (C)

C-limited growth E-limited growth

Decomposer population:
Ė p F � F � lED v i D Ė p (1/a) vC E � (1/d � 1/a)vC E � lED V D V D D Ė p [d/ (a � d)] iE E � iE E � lED I D I D D

Ċ p c F � lCD v, C D Ċ p cvC E � ldED V D D
�1Ċ p (1/d � 1/a) iE E � ldED I D D

Organic resource:
0Ė p lE � F � lEV V v V

0Ė p lE � vE E � lEV V V D V
0Ė p lE � [d/ (a � d)] iE E � lEV V I D V

0Ċ p lC � F � lCV V v, C V
0Ċ p lC � vC E � lCV V V D V

0 �1Ċ p lC � (1/d � 1/a) iE E � lCV V I D V

Inorganic resource:
0Ė p lE � lE � FI I I i

0Ė p lE � lE � (1/d � 1/a)vC EI I I V D
0Ė p lE � lE � iE EI I I I D

Note: See table 1 for definitions of symbols.

Most models of organism growth include the con-
sumption of energy and nutrients for what is called either
basal metabolism or maintenance cost. This consumption
is needed to fuel the most basic processes essential to
cellular life and to replace the elements inescapably lost
from all cells, and so it is totally independent from the
growth process. We did not feel, however, that it was an
important process to include in our special case (see
“Discussion”).

Decomposers obtain their carbon solely from the or-
ganic resource (C V), with a flux Fv, C (fig. 1). Concurrently,
they obtain some of the needed E from E that is linked
to the carbon (E V), with a flux Fv. Since the two elements
are absorbed together, and given equation (1), we have

F p aF . (3)v, C v

Homeostasis of decomposer elemental composition re-
quires that . From equations in tabledC /dt p b(dE /dt)D D

2, we see that this stoichiometric constraint translates into
the following relation between fluxes:

F p d(F � F ),v, C v i

where Fi is a flux of EI, adjusting for decomposer C : E
composition: EI is either taken up by the decomposers, if
their organic E uptake is not sufficient to meet their E
demand (immobilization), or excreted, if organic E comes
in excess (mineralization).

After some algebraic manipulation using equations (2)
and (3), we obtain the following stoichiometric relation
between the regulating flux of EI and the flux of ingested
C:

1 1
F p � F . (4)i v, C( )d a

From equation (4), we understand that the two fluxes
are proportional and that the factor of proportionality is
simply the difference between the C : E ratio of the organic

resource and that of decomposer demand. However, we
cannot deduce from this equation which of the two fluxes
controls the other. But by looking at the resources that
can potentially limit decomposer growth rate, we can dis-
tinguish two situations.

In the first case, EI is insufficient to entirely complement
the organic food available for uptake. In other words, de-
composers are E limited and Fi is the growth-limiting flux.
If we consider that EI uptake in this case obeys the law of
mass action, that is,

F p iE E ,i D I

where i is the uptake rate of the inorganic resource by E-
limited decomposers, then, considering equation (4), we
have

�1

1 1
F p � iE E .v, C I D( )d a

In the second case, EI availability is sufficient. Decom-
posers are then limited by the availability of C, and Fv is
the growth-limiting flux. In this case, applying again the
mass-action law, we have

F p vC E ,v, C V D

where is the uptake rate of the organic resource by C-v
limited decomposers. Introducing this into equation (4)
yields

1 1
F p � vC E .i V D( )d a

Note that for C-limited decomposers, depending on the
relative values of the C : E ratios of the organic resource
and decomposer demand (a and d), Fi can be negative.
Due to the stoichiometric constraints on the compositions
of the organic resource and the decomposers, the inorganic
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resource is an unusual resource that is needed by decom-
posers only when their organic resource is deficient in E.
The inorganic resource—when needed—cannot, in this
model, be complemented by any other resource because
decomposers are in absolute need of EI in order to satisfy
their E demand. Then inorganic and organic resources are
essential resources (sensu Tilman 1980) for E-limited de-
composers, and Liebig’s law of the minimum can be ap-
plied; that is,

1 1
F p min iE E , � vC E . (5)i I D V D[ ( ) ]d a

When , we are in the case of an E-iE ! (1/d � 1/a)vCI v

limited growth where andF p iE E F p (1/d �i D I v, C

, whereas when , we are in�11/a) iE E iE 1 (1/d � 1/a)vCI D I V

the case of a C-limited growth where andF p vC Ev, C V D

. One can verify easily thatF p [(a � d)/ad] vC Ei V D

could have been�1F p min [(1/d � 1/a) iE E , vC E ]v, C I D V D

used instead of equation (5) and would have led to the
same formulation for the two fluxes Fi and Fv, C.

Graphical Determination of the Resource Equilibrium

Our model describes the dynamics of a population con-
suming two potential resources. It can be solved using the
resource-ratio graphical approach developed by Tilman
(1980).

Take the plane formed by all the combinations of values
of the two potential resources (CV in abscissa and EI as an
ordinate—EV can be deduced from the former by dividing
it by a). Draw on this plane the zero net growth isocline
(ZNGI) for decomposer growth. The ZNGI corresponds
to the set of combined values of resources that lead to a
stop in net growth of decomposers. This is the case, when
decomposers are C limited, for

l∗ ∗C p R p d ,V V v

( )a � d l∗E ≥ , (6)I
ai

and, when decomposers are E-limited, for

( )a � d l∗ ∗E p R p ,I I
ai

l∗C ≥ d (7)V v

(see app. A, available in the online edition of the American

Naturalist). Expressions (6) and (7) are simply the equa-
tions for two half lines, the union of which makes the
ZNGI (fig. 2A). The two half lines are perpendicular and
parallel to the axes, as is always the case for two essential
resources (Tilman 1980). The point of junction of the two
half ZNGIs is a particular case where both resources are
limiting. It is the colimitation point (fig. 2A). The coor-
dinates of this point ( , ) are the minimum require-∗ ∗R RV I

ments of decomposers for the two resources CV and EI,
respectively, their R∗ values according to Tilman (1980).

Notice, however, that contrary to the usual acceptation
of R∗, can be negative (fig. 2B). From equation (7), we∗R I

deduce that this is the case when the decomposer C : E
demand ratio, d, is greater than the C : E ratio of the or-
ganic resource, a. It corresponds to the situation where
the decomposers mineralize EI, which in this case cannot
be considered a resource anymore. The ZNGI is then only
the positive part of the half line with equation ∗C pV

.∗R p d (l/v)V

We know that the resource equilibrium point is situated
on the ZNGI, but more information is needed to locate
its exact position. At equilibrium, we have 0l(C �V

and (see corresponding∗ ∗ 0 ∗ ∗C ) p F l(E � E ) p FV v, C I I i

equations in table 2), or, written in vectorial form,

0 ∗ ∗E � E FI I ip .0 ∗ ∗[ ] [ ]C � C FV V v, C

The left-hand vector is the net “supply vector,” while the
right-hand vector is the “consumption vector” (Tilman
1980; Daufresne and Loreau 2001b). The two vectors must
be exactly opposite at equilibrium (fig. 2). But we know
that because of the stoichiometric constraints, ∗ ∗F /F pi v, C

(eq. [4]). Thus, we also have1/d � 1/a

0 ∗E � E 1 1I I p � . (8)
0 ∗C � C d aV V

The resource equilibrium point ( , ) is then located∗ ∗C EV I

at the intersection between the ZNGI and the line with
slope that passes through the supply point1/d � 1/a
( , ) (fig. 2).0 0C EV I

The supply points located between the ZNGI and the
axes (region I in fig. 2A) lead to equilibrium values of
resources that would be greater than their supply values,
a nonsustainable situation. They correspond to trivial
equilibria, where decomposers are washed out and the
resource equilibrium point coincides with the supply point
( , ).0 0C EV I

Supply points above the ZNGI lead to nontrivial equi-
libria. The line with slope that passes through1/d � 1/a
the colimitation point (the colimitation line) divides this
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Figure 2: Graphical determination of the resource equilibrium, based
on the method developed by the resource-ratio theory (Tilman 1980).
In the plane formed by the two resources CV and EI as coordinates,
the decomposer zero net growth isocline (ZNGI; dashed lines) is the
set of (CV, EI) values that result in zero net growth of the decomposer
population. The supply points (circles) are the points corresponding
to the two resource supply concentrations ( , ). For supply points0 0C EV I

in region I, the supply of resources is too low to maintain a viable
decomposer population at equilibrium. Decomposers then go extinct,
and the resource equilibrium point merges with the supply point. For
supply points outside region I, decomposers persist at equilibrium. The
resource equilibrium points (stars) are the points of each ZNGI where
the consumption vector is exactly opposite to the supply vector. Since
the consumption vector has a slope of and the supply vector1/d � 1/a
points toward the supply point, the resource equilibrium point lies at
the intersection of the ZNGI and the line with slope passing1/d � 1/a
through the supply point. The colimitation line (dotted lines) is the
line with the same slope that passes through the colimitation point
(triangles). It divides the region of supply points that allow decomposer
persistence into a region that yields E-limited equilibria (region II) and
a region that yields C-limited equilibria (region II ′). In A, d, the C : E
demand ratio of decomposers, is less than a, the C : E ratio of the
organic resource. Decomposers have a deficit in organic E and have to
immobilize EI to maintain the constancy of their composition. In B, d

is greater than a. Decomposers have an excess of organic E and have
to mineralize EI to keep their composition constant.

part of the resource plane into two regions (regions II and
II′ in fig. 2A). We can see easily that supply points under
this line (region II in fig. 2A) give E-limited equilibria,
while supply points above it give C-limited equilibria (re-
gion II′ in fig. 2A). In the case where decomposers are
mineralizers (fig. 2B), only C-limited equilibria are
possible.

Stoichiometry-Induced R∗ Trade-Off

In plants, for a given loss rate, the rules governing the
relation between R∗ values of different essential elements
are not well determined; a trade-off between the compet-
itive abilities of a species for two essential elements is often
hypothesized (Tilman 1980), but this assumption has sel-
dom been tested, and there are some counterexamples
(Tilman 1981). In the case of decomposers, the simulta-
neous use of the organic and inorganic resources must
satisfy the stoichiometric constraint of a constant com-
position, and this constraint results necessarily in a trade-
off between the two R∗ values.

For the organic resource, is the R∗ (eq. [6];∗R p d (1/v)V

app. A). We see immediately that is proportional to d,∗RV

the decomposer C : E demand ratio. This positive relation
between these two parameters is not surprising since both
of them are measures of the importance of the C demand
of decomposers. The higher the percentage of C in de-
composer biomass, the higher its C demand and the higher
the minimum requirement for C at equilibrium ( ).∗RV

For the inorganic resource, is the R∗∗R p (a � d) l/aiI

(eq. [7]; app. A) and is also related to d. But here, it is
negatively proportional to d. Again, this is not surprising
because d measures the importance of E demand relative
to C demand. The lower the C : E demand ratio of de-
composers, the higher their relative demand for E and the
higher the minimum equilibrium concentration of EI

( ) needed to complement EV and meet the equilibrium∗R I

E demand.
The trade-off between the two R∗ values can be ex-

pressed analytically:

l v∗ ∗R p � R . (9)I Vi ai

Thus, the colimitation point ( , ) is located on the R∗∗ ∗R RV I

trade-off curve . Decomposers withE p l/i � (v/ai) CI V

different C : E demand ratios (all other parameters being
kept constant) will have their ZNGIs positioned in dif-
ferent places on the resource plane but with all their co-
limitation points placed on the trade-off line (fig. 3A). The
smaller the C : E demand ratio, the lower the minimum
C requirement of decomposers at equilibrium ( ) and∗RV

the higher their minimum EI requirement ( ). Graphi-∗R I
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Figure 3: A, Changes in the location of the decomposer zero net growth isocline (ZNGI; dashed line) with d, the C : E demand ratio of decomposer
biomass. As d varies, all other parameters being constant, the colimitation point (triangles) that lies at the corner of the ZNGI moves along the R∗

trade-off curve (solid line). The smaller d, the closer the ZNGI to the Y-axis and the colimitation point to the point (0, ). B, GraphicalmaxRI

determination of the various d threshold values that delimit equilibria with different properties. The parameter separates d values that resultminerdimm

in immobilization by decomposers from those that result in mineralization. The decomposer colimitation point lies at the intersection between the
R∗ trade-off curve and the X-axis. The ZNGI (dashed line) then has its E-limited half-part confounded with the X-axis. The parameter separatesElimdClim

d values that result in E-limited equilibria from those that result in C-limited equilibria. The colimitation line (dotted line) with slope 1/d � 1/a
then passes through the supply point (filled circle), and the resource equilibrium point is confounded with the colimitation point. The parameter

separates d values that result in C-limited equilibria with a viable decomposer population from those that result in C-limited equilibria withwashoutdClim

an extinct decomposer population. The supply point then lies on the C-limited half of the decomposer ZNGI. The parameter separates dElimdwashout

values that result in E-limited equilibria with a viable decomposer population from those that result in E-limited equilibria with an extinct decomposer
population. The supply point then lies on the E-limited half of the decomposer ZNGI.

cally, this translates into the fact that the smaller the d

ratio, the closer the colimitation point to the Y-axis (fig.
3A). In the limiting case where the C : E demand ratio
tends to 0, also tends to 0 and tends to a maximum∗ ∗R RV I

value equal to l/i. In a first interpretation, canmax maxR RI I

be understood as the of decomposers with C demand∗R I

considerably less than their E demand. This may not look
like a biologically realistic situation, but an alternative ap-
proach may help us to better grasp the biological meaning
of the parameter . From the analytical expression ofmaxR I

, we can see that can be∗ maxR p (a � d) l/ai R p l/iI I

reached when a, the C : E ratio of the organic resource,
tends to infinitely high values. Here the biological inter-

pretation of is straightforward: it is simply the con-maxR I

centration to which EI is driven by E-limited decomposers
when these have an organic resource with only traces of
E.

Definition and Graphical Determination of
d Threshold Values

The identity of the limiting element at equilibrium, as well
as the persistence of decomposers at equilibrium, depends
on the relative positions of the ZNGI and the supply point
(fig. 2). Since a change in the decomposer C : E demand
ratio d leads to a change in the position of the ZNGI, some
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values of d will result in equilibria where C limits decom-
poser growth, while others will produce E-limited equi-
libria. Some will result in the extinction of decomposers,
while others will allow for their persistence at equilibrium.
Some will lead to mineralization, others to immobilization
of EI. These various contrasts lead to the definition of
different threshold values of d, which can be calculated
analytically.

The first of these threshold values, , separates theminerdimm

decomposer C : E demand ratios that lead to equilibria for
which decomposers mineralize E from those that result in
equilibria where decomposers immobilize E. Decomposers
with d exactly equal to this threshold value do not im-
mobilize or mineralize E, and so they do not have any
requirement for EI at equilibrium ( ). They have∗R p 0I

relative C and E demands that perfectly match the C : E
ratio of their organic resource, which explains why minerdimm

is equal to the organic resource C : E ratio. The position
of their ZNGI can be determined easily because their co-
limitation point , ) is at the intersection of the R∗∗ ∗(R RV I

trade-off curve with the X-axis (fig. 3B). Decomposers with
other C : E demand ratios immobilize for ratios less than

and mineralize for ratios greater than .miner minerd dimm imm

The second threshold value, , is the decomposerE limdC lim

C : E demand ratio that separates E-limited equilibria from
C-limited equilibria. It is the unique value of d where
decomposers are colimited by the two elements E and C.
In this case, the EI concentration at equilibrium needed
by decomposers for sustainable growth ( ) is just enough∗E I

to provide the complement of E needed by the decom-
posers to grow on the CV concentration available at equi-
librium. Graphically, it is the value of d for which the
supply point lies on the colimitation line (fig. 3B). When
d is greater than , a higher decomposer C demandE limdC lim

leads to a C-limited equilibrium, while when d is less than
, a higher E requirement leads to an E-limitedE limdC lim

equilibrium.
Two threshold values of d separate equilibria where de-

composers are persistent from equilibria where they are
driven to extinction, one for each type of elemental lim-
itation (E and C limitation). Among decomposer C : E
demand ratios leading to C-limited equilibria, iswashoutdC lim

the value for which the supply of C, , matches precisely0C V

the minimum CV decomposer requirement at equilibrium,
. Since the entire C supply at equilibrium is required∗RV

in the form of organic resource CV, there is no C left for
building biomass, and decomposers go extinct. But the
slightest increase in the supply of C or decrease in the
decomposer C : E demand ratio would lead to the ap-
pearance of a small viable decomposer population at equi-
librium. Thus, marks the transition between C : EwashoutdC lim

demand ratios leading to sustainable decomposer popu-
lations at equilibrium (when d is less than ) andwashoutdC lim

C : E demand ratios conducive to the extinction of de-
composers (when d is greater than ). Graphically, itwashoutdC lim

is the value of d for which the supply point lies on the
half ZNGI holding the C-limited equilibria (fig. 3B).

The equivalent threshold value for E-limited equilibria,
, is the decomposer C : E demand ratio for whichE limdwashout

the supply of EI is hardly sufficient to sustain an E-limited
decomposer population at equilibrium. When the decom-
poser C : E demand ratio is less than , the minimumE limdwashout

equilibrium E requirement of decomposers cannot be met,
and decomposers go extinct. When the decomposer C : E
demand ratio is greater than , their equilibrium EE limdwashout

requirement is satisfied, and equilibria with a viable de-
composer population are possible. Graphically, isE limdwashout

the value of d for which the supply point lies on the half
ZNGI holding the E-limited equilibria (fig. 3B).

Determination of the Properties of the Equilibrium by
Resource Supplies, R∗ Trade-Off, and Decomposer

Elemental Composition

The four threshold values defined in the preceding section,
, , , and , can be calculated or foundminer E lim washout E limd d d dimm C lim C lim washout

graphically for any supply point ( , ). But for a given0 0C EV I

supply point, some of these values may result in unfeasible
equilibria. The most evident case is when the supply point
is situated below the R∗ trade-off curve, a case that is
represented in figure 4A. In that situation, for all values
of d, at least one of the resource supplies and is0 0C EV I

below its corresponding equilibrium requirement. The
medium is simply not rich enough for any kind of de-
composers to persist, and these are always washed out,
given enough time (fig. 4A′). Here, and ,washout E limd dC lim washout

which mark the transitions between persistent and non-
persistent equilibria, are not feasible, and andminer E limd dimm C lim

are not meaningful because decomposers are extinct at
equilibrium and no mineralization, immobilization, or
growth limitation occurs.

For supply points located above the R∗ trade-off curve
(fig. 4B–4E), there is always a range of decomposer C : E
demand ratios where the supply point is above the ZNGI,
producing persistent decomposer populations at equilib-
rium. For supply points located as in fig. 4B, we can see
graphically that . For E-E lim E lim miner washout0 ! d ! d ! d ! dwashout C lim imm C lim

limited decomposers to be persistent, their C : E demand
ratio must, first, be among the values that result in E-
limited equilibria, which is true for (limitationE limd ! dC lim

condition), and, second, be among the values that lead to
persistent E-limited decomposers, that is, with d 1

(persistence condition). E-limited persistent de-E limdwashout

composers are thus possible only for . InE lim E limd ! d ! dwashout C lim

the same way, C-limited persistent equilibria are reached
for . The range of C : E demand ratiosE lim washoutd ! d ! dC lim C lim
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leading to persistent equilibria is then E limd ! d !washout

(fig. 4B ′). Mineralization takes place only with C-washoutdC lim

limited decomposers because E-limited decomposers con-
sume EI instead of mineralizing it. Also, the decomposer
population must be persistent if there is to be a nonzero
mineralization flow at equilibrium, that is, d is to be
lower than (persistence condition for mineraliza-washoutdC lim

tion). Since decomposers at equilibrium mineralize only
for C : E demand ratios greater than (stoichiometricminerdimm

condition for mineralization), mineralization occurs for
(fig. 4B ′).miner washoutd ! d ! dimm C lim

In the case shown in figure 4C, the supply concentration
of EI, , is greater than , the highest possible value.0 max ∗E R RI I I

Thus, is always greater than , the decomposer EI min-0 ∗E RI I

imum requirement, and all E-limited equilibria are persis-
tent. Here, we have , andE lim E lim miner washoutd ! 0 ! d ! d ! dwashout C lim imm C lim

decomposers are persistent for (fig. 4C ′).washout0 ! d ! dC lim

The case in figure 4D is close to that of figure 4B, with
the lowest values of decomposer C : E demand ratios leading
to the extinction of E-limited decomposers (0 ! d !

). But a difference lies in the fact that is lessE lim washoutd dwashout C lim

than . Mineralization is possible only for decomposerminerdimm

C : E demand ratios greater than , but all the valuesminerdimm

of d that would lead to mineralization are also greater than
and correspond to nonpersistent equilibria (fig. 4D′).washoutdC lim

This explains why, in this case, there cannot be minerali-
zation for any value of the decomposer C : E demand ratio.

The last situation, in figure 4E and 4E ′, shares with the
case in figure 4C the fact that all E-limited equilibria are
persistent. It shares with the case in figure 4D the absence
of d values resulting in mineralization.

From the different cases illustrated in figure 4, we can
draw some conclusions on the links between resource sup-
plies and the feasibility of the different equilibria: (1)
When the supply of inorganic resource ( ) is greater than0E I

(fig. 4C, 4E), the minimum requirement of decom-maxR I

posers for EI is always smaller than . Hence, the supply0E I

of EI is always sufficient to sustain E-limited decomposer
growth at equilibrium, even for decomposers with high
demands for E (small values of d). (2) Mineralization is
possible only when the supply of organic C ( ) is suf-0C V

ficiently high (fig. 4B, 4C). When is too low, as in0C V

figure 4D and 4E, decomposer C : E demand ratios that
would result in mineralization do not allow the persistence
of decomposers at equilibrium. Mineralization is thus pos-
sible only for ecosystems that are rich in organic resources
and for decomposers with C : E demand ratios greater than
the C : E ratio of their organic resource.

Competition between Decomposers with Different
Elemental Compositions

The resource-ratio theory has been extended straightfor-
wardly from the study of one plant population to the case

of two or more different plant species competing for two
resources (Tilman 1980). Our model can also be extended
to study the competition between two decomposer species
differing in their C : E demand ratios. We just have to
introduce a new decomposer species and its associated
material fluxes with two resources. The introduced species
differs from the first decomposer species only in its d ratio;
we assume that all the other parameters are equal.

There are two conditions to make coexistence between
two species sharing two resources possible (Tilman 1980).
First, because the equilibrium point lies necessarily at the
intersection of the two ZNGIs, the two ZNGIs must in-
tersect in at least one point. Because of the stoichiometric
constraints, the two decomposers have their colimitation
points located on the R∗ trade-off curve; hence, the two
ZNGIs necessarily intersect (fig. 5).

At the equilibrium point, the two species are limited by
different resources: the population species with the lower
C : E demand ratio d (species 1 in fig. 5A) is E limited,
while the other (species 2 in fig. 5A) is C limited. The
second condition for possible coexistence is that each spe-
cies consume relatively more of the resource that limits
its own growth rate (Tilman 1980). In our particular case,
it means that species 1 should consume more EI than does
species 2 at equilibrium, and species 2 should consume
more CV than does species 1 at equilibrium. At equilib-
rium, each species has its own consumption vector:

∗Fi, 1�c p1 ∗[ ]Fv, C,1

for species 1, and

∗Fi, 2�c p2 ∗[ ]Fv, C, 2

for species 2. Because of the stoichiometric constraints,
and have slopes� �c c1 2

1 1
p p � ,1

d a1

1 1
p p � , (10)2

d a2

respectively. If we remember that , we deduce im-d ! d1 2

mediately from equation (10) that (fig. 5). In termsp 1 p1 2

of resource consumption, this translates simply into the
fact that species 1 does consume more EI than does species
2, and species 2 does consume more CV than does species
1 at equilibrium, thus fulfilling the second condition.
Hence, the stoichiometric constraints on decomposer
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Figure 4: Effects of the location of the resource supply point ( , ; filled circles) on the feasibility of the various possible equilibria of a decomposer0 0C EV I

population growing on an inorganic (EI) and an organic (CV) resource according to model 1 (A–E) and on the variation in equilibrium decomposer
biomass ( ) as a function of the decomposer C : E demand ratio d (A′–E ′). The feasibility of the equilibria can be deduced from the order of the∗ED

d threshold values (defined in fig. 3). In A, the supply point lies below the R∗ trade-off curve (solid line), and decomposers go extinct. Equilibrium
decomposer biomass is 0 for all d values as shown in A′. In B, , so decomposers with low values of d go extinct. The value of is sufficiently0 max 0E ! R CI I V

high for mineralization (C ′, solid line) to occur for decomposers with a d ratio between and , as shown in B ′. In C, , and allminer washout 0 maxd d E 1 Rimm Clim I I

E-limited decomposers are persistent at equilibrium (C ′, dotted line). The value of is still sufficient for mineralization. In D, , but now0 0 maxC E ! RV I I

is too low and C-limited persistent decomposers (D ′, dot-dashed line) immobilize E at equilibrium. In E, , and is too low for0 0 max 0C E 1 R CV I I V

mineralization.

composition result automatically in the satisfaction of the
first two conditions necessary for the coexistence between
decomposer species that differ in their d ratios.

The last sufficient condition for coexistence depends on
the position of the supply point, which has to be located
in the region of the plane delimited by the extension of
the two consumption vectors and (fig. 5A). As is� �c c1 2

shown graphically in figure 5A and can be justified
straightforwardly with geometrical arguments, the last two
conditions are fulfilled when the two single-species re-
source equilibrium points are located above the two-spe-
cies resource equilibrium point. When at least one of the
single-species equilibrium points is situated below the two-
species equilibrium, as is the case for species 2 in figure
5B, the supply point cannot belong to the region delimited
by the extension of the two consumption vectors, and the
last condition for coexistence is not fulfilled. If one of the
two single-species equilibrium points lies below the two-
species equilibrium point ( , ), either is less than∗ ∗ ∗R R EV, 2 I, 1 I, 2

or is less than (as is the case in fig. 5B). In∗ ∗ ∗R C RI, 1 V, 1 V, 2

the first case, species 2 is still able to grow for values of
EI slightly lower than , the two-species equilibrium∗R I, 1

value, but species 1 cannot do so and hence is excluded
competitively. In the second case, illustrated in figure 5B,
it is species 1 that wins the competition because it is able
to grow for values of CV slightly lower than while∗RV, 2

species 2 is not. When the two single-species equilibrium
points lie below the two-species equilibrium point, the two
consumption vectors are not even in the appropriate ar-
rangement to fulfill the second condition for coexistence
(not shown in fig. 5).

A corollary of the last coexistence condition is that two
decomposer species limited by the same element when
alone cannot coexist (fig. 5B): if the two species are C
limited, is equal to , which is less than be-∗ ∗ ∗C R RV, 1 V, 1 V, 2

cause d1 is less than d2. So it is species 1 that wins the
competition (as is the case in fig. 5B). If the two species
are E limited, is equal to , which is less than∗ ∗ ∗E R RI, 2 I, 2 I, 1

because d2 is greater than d1. In that case, species 1 is
competitively excluded. A consequence is that, given
enough time for evolution of the decomposer C : E de-
mand ratio d, coexisting decomposers should converge

toward colimitation by C and E because E-limited decom-
posers will be outcompeted by E-limited decomposers with
greater C : E demand ratios and C-limited decomposers
will be outcompeted by C-limited decomposers with lower
C : E demand ratios.

In summary, there are three conditions for the coex-
istence of two species of decomposers competing for an
inorganic resource and an organic resource. First, the two
ZNGIs must intersect. Second, each species must consume
relatively more of the resource that limits its own growth
rate. Third, the supply point must be located in the region
of the plane delimited by the extension of the two con-
sumption vectors (Tilman 1980). Stoichiometric con-
straints on the relative consumption of the two resources
ensure that the first two conditions are fulfilled. Fulfillment
of the third condition is not made easier by stoichiometric
constraints. However, we show that the second and third
conditions can be combined into a single condition: the
two single-species resource equilibrium points must lie
above the two-species resource equilibrium point. Because
of stoichiometric constraints, this condition should result,
by means of species replacement or adaptation, in the
convergence of decomposer communities toward colimi-
tation by C and E.

Discussion

The model developed here applies the methodology elab-
orated mainly for plants in the resource-ratio theory to
the growth of microbial decomposers on two elements,
carbon (C) and another element (E), which could be phos-
phorus, nitrogen, iron, or any other potentially growth-
limiting essential element. These two elements are con-
tained in two resources available to decomposers. One
resource contains only E in inorganic form. The second
resource is organic and is made of both C and E. The
improvement brought by this model, compared with the
usual models employed in resource-ratio theory, lies in the
introduction of constraints on the elemental compositions
of the organic resource and of decomposer demand by
imposing a constant C : E ratio. The addition of these
stoichiometric constraints leads to a set of new insights
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Figure 5: Graphical determination of the resource equilibrium point and
its stability in the case of two competing decomposer populations that
differ only in their d values (d1 and d2). The resource equilibrium point
(gray stars) is located at the intersection of the two zero net growth
isoclines (ZNGIs). Because the two colimitation points lie on the R∗

trade-off curve, the two ZNGIs necessarily intersect and the equilibrium
is feasible. At this equilibrium, decomposers with ratio d1 are E limited,
while decomposers with ratio d2 are C limited. For the equilibrium to
be stable, each decomposer must consume more of the resource that
limits its own growth. In this model this condition is always fulfilled, as
can be seen from the relative positions of the two consumption vectors

and (see Tilman 1980). This is the case because the ratio of EI : CV
� �c c1 2

consumed at equilibrium, , is greater for decomposers with ratio1/d � 1/a
d1 than for those with ratio d2. The last condition for coexistence requires
that the two single-species resource equilibrium points (black stars) be
above the two-species resource equilibrium point. Only when this con-
dition is fulfilled does the supply point (filled circles) belong to the region
of the plane delimited by the extension of the two consumption vectors.
This last condition is met in A but not in B.

and predictions, in particular, (1) a trade-off between the
R∗ values of the two resources, (2) favorable conditions
for the coexistence of decomposers that have demands
with different elemental ratios, and (3) convergence of the
decomposer community, through species replacement or
evolution, toward colimitation by the organic and inor-
ganic resources. The homeostasis of decomposer stoichi-
ometry and the difference between the elemental com-
position of the organic resource and of the demand of

decomposers are the key factors responsible for these
predictions.

To reach our predictions on the coexistence and evo-
lution of competing decomposers, we examined the var-
iation of a single parameter, namely, the decomposer
C : E demand ratio, while keeping all other parameters
constant. We also performed an equilibrium analysis and
assumed that environmental parameters, such as resource
supplies and loss rates, were constant. Although these re-
strictions may limit the generality of our predictions, we
feel that lifting them would be out of the scope of this
article and would not affect our main point, that stoichio-
metric constraints are the source of a trade-off between
the R∗ values of the two resources and a factor favoring
the coexistence of decomposers that differ in their relative
demands for the two elements. We anticipate that letting
decomposers vary in parameters other than their C : E
demand ratio will not have a systematic impact on co-
existence unless these parameters are correlated to the de-
mand ratio. We also expect that environmental variability
will generally prevent the competitive interaction from
reaching its conclusion and, hence, facilitate coexistence
and delay the long-term convergence of decomposers to
colimitation by the organic and inorganic resources. More
detailed studies on these issues, however, would be useful.

Two important assumptions of our model require some
discussion: the constancy of decomposer elemental com-
position and that of carbon gross growth efficiency, which
together result in the constancy of the decomposer C : E
demand ratio. The assumption that single-species decom-
poser elemental composition is constant is still open to
debate. There are a number of studies on variation in the
chemical composition of different organisms (e.g., Sterner
and Elser 2002; Evans-White et al. 2005), but few of them
deal with variation in the chemical composition of mi-
crobial decomposers such as bacteria and fungi. There is
a fundamental difference between autotrophs, which can
experience large variations in their elemental composition,
and metazoans, which have much smaller variations
(Sterner and Elser 2002). Bacteria seem to lean more to-
ward the case of metazoans, with much less variation than
autotrophs (Makino et al. 2003). But some variation does
exist among individual strains of bacteria (Vrede et al.
2002). Although a comprehensive review of the factors
causing variations in microbial elemental composition is
still lacking, it seems from current knowledge that growth
rate is the most important factor controlling the variation
of the element that limits growth (Vrede et al. 2002; Ma-
kino et al. 2003), while both growth rate and element
supply control the variation of nonlimiting elements
(Vrede et al. 2002; Zinn et al. 2004). Because our analysis
was performed at equilibrium, as long as the loss rate—
which is equal to the growth rate at equilibrium—is con-
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stant, there should not be any change in the elemental
composition of decomposers due to variation in their
growth rate. Supply of the nonlimiting element is also
important because it influences the amount of this element
stored by decomposers at equilibrium (Herbert 1976; Zinn
et al. 2004). The storage capacity of decomposers generally
decreases with their growth rate (Vrede et al. 2004; Zinn
et al. 2004), and some elements, such as nitrogen, do not
seem to be stored at all. Hence, our hypothesis of a con-
stant composition is appropriate for high growth rates and
for some elements, such as nitrogen.

Carbon gross growth efficiencies measured in nature are
highly variable (del Giorgio and Cole 1998). As for de-
composer elemental composition, it seems that growth rate
and resource supply are the main drivers of these variations
(Cajal-Medrano and Maske 2005; Lennon and Pfaff 2005;
Jansson et al. 2006). Most of these studies, however, con-
cern bacterial assemblages, and shifts in community com-
position might be a better explanation of these variations
than physiological plasticity of single species (Eiler et al.
2003). Hence, it is still difficult, based on current knowl-
edge, to form conclusions on the constancy or variation
in the carbon gross growth efficiency of decomposers. This
parameter is also important because it determines the in-
tensity of the mismatch between the C : E ratios of de-
composer demand and elemental composition. A poor
estimation of carbon gross growth efficiency may lead to
an erroneous assumption that decomposers mineralize or
immobilize the inorganic resource and thus may conceal
their true function in the ecosystem. For all these reasons,
we see the study of this physiological parameter and of
the factors that govern its variations as a key target for
future microbial ecological studies.

Contrary to many models of microbial growth, our
model also assumes that there is no consumption of C
and E for basal metabolism. It is commonly assumed that
losses of C and E for maintenance are small, constant
fractions of decomposer biomass (Marr et al. 1962). The
introduction of a constant mass-specific basal metabolic
rate in accordance with this assumption should not bring
qualitative changes to our predictions. This rate would
simply add to the loss rate l. Because of these increased
losses of C and E in decomposers, the model would deviate
from the conditions of a chemostat, which would make
the calculations of equilibrium values, threshold values,
stability conditions, and feasibility conditions a little more
complicated but would not yield qualitatively different re-
sults. One qualitative difference would appear in the spe-
cial case where the supply and loss rates of one resource
are 0. Our model predicts the persistence of decomposers
after they have exhausted the amount of the nonrenewed
resource present in the ecosystem, while the addition of
a basal metabolic rate would predict that decomposers

burn their own biomass until extinction. However, many
microbial decomposers are known to have resistance
forms, such as spores or dormant stages, that have neg-
ligible maintenance costs, and thus our model might be
closer to reality even in this very special case of starvation
in a closed ecosystem. Models such as those of Thingstad
and Pengerud (1985) and Thingstad (1987) explicitly in-
troduced variation in C : P composition and/or mainte-
nance costs, but these improvements did not bring con-
clusions that differ drastically from our conclusions on the
common issues addressed by the various models, and they
did not address the main topic of interest of this article,
namely, the use by decomposers of a resource that contains
both carbon and another element and its consequences on
their species interactions and their role in elemental
cycling.

In resource-ratio theory, the coexistence of two decom-
poser populations requires that each of them be limited
by a different resource at equilibrium and that each con-
sume proportionately more of the resource that limits its
own growth (Tilman 1980). Because the theory links the
relative consumption of an element to its relative demand
for growth, we predict that the stoichiometric constraints
on the elemental compositions of the organic resource and
decomposers should help fulfill these two conditions and
make coexistence on the two resources possible, given ad-
equate resource supplies. Resource competition between
different decomposer strains or species has rarely been
addressed experimentally (e.g., Vadstein 1998; Basson
2000; Celar 2003; Diedhiou et al. 2004) and certainly never
by using organic resources that combine two limiting el-
ements or by looking for differences in elemental com-
position between competitors. Therefore, it is premature
to draw conclusions on the validity of this result. Our
model, however, seems a promising path to understanding
decomposer community structures. It is known, for ex-
ample, that bacteria and fungi have different C : P and
C : N ratios and that substrate C : N ratio can have an
influence on fungal/bacterial biomass ratios (Eiland et al.
2001). If we also consider the vast number of limiting
resources created by the combination of the various es-
sential elements (C, N, P, Fe, etc.) in organic resources
with different possible elemental ratios (parameter a in
our models), we see that this stoichiometry-enhanced
mechanism of coexistence has a great potential for ex-
plaining the high diversity that is usually encountered in
natural decomposer communities. A last necessary con-
dition for coexistence concerns the location of the supply
point, which must belong to the region delimited by the
extension of the consumption vectors of the two com-
peting species (Tilman 1980). We have shown graphically
that the second and third conditions are fulfilled if and
only if the two single-species equilibrium points are lo-
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cated above the two-species equilibrium point, which lies
at the intersection of the ZNGIs of the two decomposer
species. Although we derived this condition in the specific
context of our model, it is general for all kinds of con-
sumers. The condition that the two ZNGIs must intersect
and the condition that the two single-species equilibrium
points must lie above the two-species equilibrium point
are necessary and sufficient to ensure the stable coexistence
of any two species competing for two resources. The bi-
ological interpretation of these two conditions is straight-
forward: coexistence is stable if the two species exhibit a
trade-off in their minimum resource requirements at equi-
librium and if each species on its own requires more of
the resource limiting the other species at equilibrium than
does its competitor. Our reformulation of Tilman’s (1980)
three conditions for coexistence into these two new con-
ditions also has a practical advantage: it is generally more
difficult to estimate the supply rate of resources in the field
than to measure their concentrations and determine which
one is limiting. Therefore, we hope that our work will
facilitate the use of resource-ratio theory in field studies,
outside of the realm of experimental and theoretical studies
(Miller et al. 2005).

We showed that decomposers limited by the same re-
source when alone cannot coexist and that, by means of
species replacement or evolution of their C : E demand
ratio, decomposers should converge along the R∗ trade-
off curve toward colimitation by the inorganic and organic
resources. Hence, even though stoichiometry is a potent
mechanism with which to explain diversity of consumers
on an ecological time scale (Hall 2004; Loladze et al. 2004),
it might prove insufficient on the time scale of evolution
because, in absence of other factors, colimitation, which
is the best strategy of resource use, will always dominate
ultimately. Therefore, other mechanisms, such as environ-
mental variability or trade-offs between the decomposer
elemental demand ratio and other growth-related param-
eters, might be needed to account for microbial decom-
poser diversity.

Other studies have already extended resource-ratio the-
ory to decomposer growth on two resources (see Smith
1993). In contrast to the work of these earlier studies,
however, we were able to derive an explicit trade-off be-
tween the R∗ of the two resources that has far-reaching
consequences for the coexistence of competing decom-
posers. In fact, in many previous models, C and E were
assumed to be totally separate resources for decomposers
(Thingstad and Pengerud 1985; Thingstad 1987). As a re-
sult, the inorganic element E was always immobilized and
never mineralized, the amount of inorganic E consumed
at equilibrium when it was limiting was independent of
the C : E ratios of decomposers and of the organic re-
source, and no trade-off between the R∗ of the two re-

sources could be deduced directly from their equilibrium
values. A few models examined the use by decomposers
of an organic resource that contains both C and E and its
relation to the use of inorganic E, but they were simulation
models (Parnas 1975; Vallino et al. 1996; Touratier et al.
1999).

All our results about decomposer competition are valid
for other kinds of consumers as long as there is a trade-
off between the R∗ of the two resources resulting from
constraints on the demand ratio for the two resources. For
situations in which C and E are physically separated, as is
the case with plants consuming essential resources, such
a trade-off was hypothesized based on optimal foraging
theory (Tilman 1980, 1986). In our study, in which C and
E are partially linked, this trade-off arises from stoichio-
metric constraints and facilitates the coexistence of two
consumer species limited by different elements. A study
of grazer competition by Loladze et al. (2004), in which
C and E were totally coupled, concluded that stoichio-
metric constraints could lead to the coexistence of con-
sumers limited by the same element. Thus, in addition to
the elemental ratios that are traditionally considered in
stoichiometric studies, the way in which these elements
are linked in resources seems to play an important role in
determining the growth and competitive interactions of
consumers. It would be interesting to study this factor in
a more systematic way.

Decomposers compete for inorganic resources not only
with each other but also with primary producers. Many
studies have addressed the issue of coexistence between
primary producers and decomposers to resolve the ap-
parent paradox of primary producers providing a much-
needed organic resource to decomposers, their main com-
petitors for inorganic resources (Currie and Kalff 1984;
Bratbak and Thingstad 1985; Daufresne and Loreau 2001a;
Mindl et al. 2005). Our current work is a useful basis for
predicting when decomposer interactions with primary
producers change from competition to mutualism and
from coexistence to competitive exclusion because it iden-
tifies the conditions under which decomposers switch from
immobilizing the inorganic resource to mineralizing it and
from carbon limitation to inorganic resource limitation
(M. Cherif and M. Loreau, unpublished data).

Based on resource-ratio and ecological stoichiometry
theories, our model yields interesting new predictions and
perspectives on important aspects of community structure
and ecosystem functioning related to microbial decom-
posers. Most of these new predictions result from the stoi-
chiometric constraints that act on the elemental compo-
sition of decomposer demand and their organic resources.
First, stoichiometric constraints generate a trade-off be-
tween the abilities of decomposers to utilize an inorganic
element and an organic resource containing this same el-
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ement. As a consequence of this trade-off, coexistence is
facilitated between decomposer types that have different
elemental demand ratios, even though, in the long run,
they should evolve toward the demand ratio that results
in colimitation of growth by the organic resource and the
inorganic element. Because of the diversity of elemental
compositions of inorganic resources, organic resources,
and decomposers, we expect this stoichiometry-related
trade-off to be an important mechanism in explaining the
diversity of decomposer communities. Second, we predict
that decomposers will be mineralizers only in ecosystems
that are rich enough to provide the quantity of organic
resources needed by mineralizing decomposers, which are
more demanding of carbon. Since other organisms provide
these organic resources, we intend to use our model as a
basis for studying the interactions between decomposers
and the other major trophic levels in ecosystems.
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Appendix A from M. Cherif and M. Loreau, “Stoichiometric
Constraints on Resource Use, Competitive Interactions, and Elemental
Cycling in Microbial Decomposers”
(Am. Nat., vol. 169, no. 6, p. 709)

Equilibria and Stability of the Model
Equilibrium Values

Table A1 presents the equilibrium values of the variables in the model with a single decomposer species. Two
equilibria are possible for each kind of limitation (E or C limitation), one in which decomposers are “washed
out” (trivial equilibrium) and the other in which decomposers persist (nontrivial equilibrium).

Local Stability and Feasibility

An equilibrium is locally stable if the system returns to it after a small perturbation. Local stability is assessed
by calculating the eigenvalues of the Jacobian matrix. An equilibrium is locally stable if and only if the real part
of all these eigenvalues is negative. Below we provide the Jacobian matrix and its eigenvalues for each of the
possible equilibria, and we derive the corresponding stability conditions. Although our dynamical system
comprises five variables (CV, EV, CD, ED, andEI), it can be reduced to the three variablesCV, ED, andEI for the
stability analysis. Indeed,EV andCD are simply equal toCV andED, respectively, multiplied by the positive
constants 1/a andd. Therefore, their response to a small perturbation is the same as that ofCV andED, and the
study of the latter is sufficient to form conclusions on the stability and feasibility of an equilibrium.

In the C-limited trivial equilibrium,

0�l �vC 0 V
0( )J p 0 1/d vC � l 0 ,V 

00 �(1/d � 1/a)vC �l V

two eigenvalues are negative and equal to�l. The third eigenvalue is negative, and hence, the equilibrium is
locally stable, for .0 ∗C ! d (l/v) p RV V

In the E-limited trivial equilibrium,

0( )�l [�ad/ a � d ]iE 0I 
0( )J p 0 [a/ a � d ]iE � l 0 ,I 

00 �iE �l I

two eigenvalues are negative and equal to�l. The third eigenvalue is negative, and the equilibrium is locally
stable, for .0 ∗E ! (a � d) l/ai p RI I

In the C-limited nontrivial equilibrium,

∗ ∗�(vE � l) �vC 0 D V
∗( )J p 1/d vE 0 0 ,D 

∗ ∗�(1/d � 1/a)vE �(1/d � 1/a)vC �l D V

one eigenvalue is negative and equal to�l. The other two eigenvalues are solutions to the equation2a l �0

. Using Routh-Hurwitz criteria, the solutions are negative ifa0,
2 ∗ ∗ ∗a l � a p l � (vE � l)l � (1/d) vE vC p 01 2 D D V

a1, anda2 have the same sign. Since this is the case here, this equilibrium is always locally stable when feasible.
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This equilibrium is feasible when C limits decomposers ( ) and their biomass is greater∗ ∗iE 1 [(a � d) /ad] vCI V

than 0 ( ).0 ∗C 1 RV V

In the E-limited nontrivial equilibrium,

∗ ∗( ) ( )�l �[ad/ a � d ]iE �[ad/ a � d ]iEI D 
∗( )J p 0 0 [a/ a � d ]iE ,D 

∗ ∗0 �iE �(l � iE ) I D

one eigenvalue is negative and equal to�l. The other two eigenvalues are solutions to the equation2a l �0

. The values ofa0, a1, anda2 are all positive (sincea must2 ∗ ∗ ∗a l � a p l � (l � iE )l � [a/ (a � d)] iE iE p 01 2 D I D

be greater thand for decomposers to be E limited); hence, this equilibrium is always locally stable when
feasible. This equilibrium is feasible when E limits decomposers ( ) and their biomass is∗ ∗iE ! (1/d � 1/a) vCI V

greater than 0 ( ).0 ∗E 1 RI I

Table A2 presents a summary of the conditions that result in the local stability of the various equilibria. For
the stability and feasibility analysis of the model with two competing decomposers, readers are referred to
Tilman (1980).

Table A1
Equilibrium values of variables for model with a single decomposer species

Equilibrium C-limited growth E-limited growth

Trivial , ,∗ 0 ∗ ∗ 0C p C E p 0 E p EV V D I I , ,∗ 0 ∗ ∗ 0C p C E p 0 E p EV V D I I

Nontrivial , ,∗ ∗ ∗ 0 ∗ ∗C p d (l/v) p R E p l(C � C )/vCV V D V V V
∗ 0 0 ∗ ∗E p C /a � E � C /a � EI V I V D

, ,∗ ∗ ∗ 0 ∗ ∗E p (a � d) l/ai p R E p l(E � E )/iEI I D I I I
∗ 0 0 ∗ ∗C p d(C /a � E � E � E )V V I I D

Table A2
Conditions resulting in local stability of equilibria in the model

Equilibrium C-limited growth E-limited growth

Trivial ,0 0 0 ∗iE 1 (1/d � 1/a)vC C ! RI V V V ,0 0 0 ∗iE ! (1/d � 1/a)vC E ! RI V I I

Nontrivial ,∗ ∗ 0 ∗iE 1 (1/d � 1/a)vC C 1 RI V V V ,∗ ∗ 0 ∗iE ! (1/d � 1/a)vC E 1 RI V I I
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Appendix B from M. Cherif and M. Loreau, “Stoichiometric
Constraints on Resource Use, Competitive Interactions, and Elemental
Cycling in Microbial Decomposers”
(Am. Nat., vol. 169, no. 6, p. 709)

Calculation of d Threshold Values
This appendix shows how to derive the analytical expressions of the four d threshold values defined in the text.

is reached when , which gives .miner ∗ minerd R p (a � d) l/ai p 0 d p aimm I imm

is reached when decomposers are colimited at equilibrium, that is, . Replacing theE lim ∗ ∗d iE p (1/d � 1/a)vCC lim I V

variables with their equilibrium values (app. A), we obtain as the positive root of the second-degreeE limdC lim

equation

2 0i d C iV 0 01 � l � i � E � 1 � l d � iC p 0,I V( ) [ ( ) ( ) ]v a a v

which is

0 0 01 C i C i C iV V VE lim 0 � 0d p � i � E � 1 � l � i � E � 1 � l � 4i 1 � l .C lim I I[ ( ) ( ) ] [ ( ) ( ) ] ( ){ }2 a v a v a v

is reached when , which gives .washout 0 ∗ washout 0d C p R p d (1/v) d p vC /lC lim V V C lim V

is reached when , which gives .E lim 0 ∗ E lim 0d E p R p (a � d) l/ai d p a(1 � iE /l)washout I I washout I
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