Biodiversity and Ecosystem Functioning
Biodiversity and Ecosystem Functioning
Synthesis and Perspectives

EDITED BY

Michel Loreau
Laboratoire d’Ecologie, Ecole Normale Supérieure, Paris, France

Shahid Naeem
Department of Zoology, University of Washington, USA

Pablo Inchausti
Laboratoire d’Ecologie, Ecole Normale Supérieure, Paris, France
Preface

The study of biodiversity and ecosystem functioning has followed a pattern that often characterizes history in science. This pattern is best described as periods of empirical and theoretical development bracketed by periods of synthesis (Kuhn 1962; Kingsolver and Paine 1991). This is not an even course; new developments are often accompanied by debate or controversy (Dunwoody 1999).

A conference, entitled Biodiversity and ecosystem functioning: synthesis and perspectives, was held in Paris, France, on 6–9 December 2000 under the auspices of the International Geosphere–Biosphere Programme—Global Change and Terrestrial Ecosystems (IGBP–GCETE) and DIVERSITAS, international programmes that foster communication among scientists involved in global change and biodiversity research. The conference was designed to facilitate synthesis of nearly a decade of observation, theory, and experiment in biodiversity and ecosystem functioning research. Its goals were to identify central principles, certainties, uncertainties, future directions, and policy implications in this area. A brief report of the conference was published in Trends in Ecology and Evolution (Hughes and Petchey 2001), and a summary of its main findings was published in Science (Loreau et al. 2001). This volume provides overviews, position papers, and reports from the synthesis workshops of the conference, which together give a synthetic and balanced account of the current knowledge and future challenges in the fast growing area of biodiversity and ecosystem functioning.

The conference was a delight. Virtually every invitation was accepted (indeed, many could not be invited or were turned away to keep the workshops of manageable size) in the interest of resolving the issues. The distribution of participants was broad, most importantly being weighted towards junior and emerging researchers. The presentations, workshops, and panel discussions were extraordinarily cordial, friendly, and interactive. Not unexpectedly, some left with as strong an opinion as they arrived with, but all were encouraged to explore the issues in greater depth and all had a greater appreciation of the perspectives and the fascinating science behind the varied perspectives.

The conference was made possible by the financial support provided by the European Science Foundation LINKECOL programme, the Centre National de la Recherche Scientifique (France), and the US National Science Foundation (DEB NSF DEB 973343). Some who attended contributed to the workshops and panel discussions although they could not contribute to the chapters. In addition, we wish to acknowledge the help of many anonymous individuals who provided critical reviews of the chapters, and Paola Paradisi, Régine Mfoumou, Christelle Blée, Marie-Bernadette Tesson and Susie Dennison who helped with logistics. And to all those that space does not provide for a proper acknowledgment, we thank for help in making the conference the success that it was.

Michel Loreau, Shahid Naeem and Pablo Inchausti
14 January 2002
Contents

Contributors x

PART I Introduction

1 Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework 3
S. Næem, M. Loreau, and P. Inchausti

2 The debate on the role of biodiversity in ecosystem functioning 12
H. A. Mooney

PART II Core areas of debate: biodiversity and ecosystem processes in grassland ecosystems

3 Plant diversity and composition: effects on productivity and nutrient dynamics of experimental grasslands 21
D. Tilman, J. Knops, D. Wedin, and P. Reich

4 Biodiversity manipulation experiments: studies replicated at multiple sites 36
A. Hector, M. Loreau, B. Schmid, and the BIODEPTH project

5 Evaluating the relative strengths of biotic versus abiotic controls on ecosystem processes 47
M. A. Huston and A. C. McBride

6 The design and analysis of biodiversity experiments 61

PART III New perspectives on ecosystem stability

7 A new look at the relationship between diversity and stability 79
M. Loreau, A. Downing, M. Emmerson, A. Gonzalez, J. Hughes, P. Inchausti, J. Joshi, J. Norberg, and O. Sala

8 Do species interactions buffer environmental variation (in theory)? 92
J. B. Hughes, A. R. Ives, and J. Norberg
9 Biodiversity and stability in soil ecosystems: patterns, processes and the effects of disturbance
P. C. de Ruiter, B. Griffiths, and J. C. Moore

10 Neighbourhood scale effects of species diversity on biological invasions and their relationship to community patterns
J. M. Levine, T. Kennedy, and S. Naeem

PART IV Extending the scope to other systems

11 Contributions of aquatic model systems to our understanding of biodiversity and ecosystem functioning

12 How can marine ecology contribute to the biodiversity–ecosystem functioning debate?
M. Emmerson and M. Huxham

13 Multi-trophic dynamics and ecosystem processes

14 Biodiversity, ecosystem functioning and above-ground–below-ground linkages
D. A. Wardle and W. H. van der Putten

15 Biodiversity, ecosystem functioning and soil decomposer food webs
J. Mikola, R. D. Bardgett, and K. Hedlund

16 The critical role of plant–microbe interactions on biodiversity and ecosystem functioning: arbuscular mycorrhizal associations as an example
M. G. A. van der Heijden and J. H. C. Cornelissen

PART V Extending the scope to other dimensions

17 Species diversity, functional diversity, and ecosystem functioning

18 Slippin’ and slidin’ between the scales: the scaling components of biodiversity–ecosystem functioning relations
J. Bengtsson, K. Engelhardt, P. Giller, S. Hobbie, D. Lawrence, J. Levine, M. Vilà, and V. Wolters

19 Effect of biodiversity on ecosystem functioning in managed ecosystems
J. Vandermeer, D. Lawrence, A. Symstad, and S. Hobbie
PART VI Synthesis

20 Perspectives and challenges
 M. Loreau, S. Naeem, and P. Inchausti

Bibliography

Index
Contributors

Richard D. Bardgett, Department of Biological Sciences, Institute of Environmental and Natural Sciences, University of Lancaster, Lancaster LA1 4YQ, UK. e-mail r.bardgett@lancaster.ac.uk

Jan Bengtsson, Department of Ecology and Crop Production Science, Swedish University of Agricultural Sciences, SLU, BOX 7043, S-750 07 Uppsala, Sweden. e-mail Jan.Bengtsson@evp.slu.se

Nina Buchmann, Max-Planck-Institute for Biogeochemistry, P.O. Box 10 01 64, 07701 Jena, Germany. e-mail buchmann@bgc-jena.mpg.de

Johannes H. C. Cornelissen, Department of Systems Ecology, Free University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands. e-mail hansco@bio.vu.nl

Valérie Degrange, UMR CNRS 5557—Ecologie Microbienne du Sol, UFR de Biologie—Université Lyon I, 43 Bd. du 11 Novembre 1918, 69622 Villeurbanne cedex, France. e-mail Valerie.Degrange@univ-lyon1.fr

Sandra Diaz, Instituto Multidisciplinario de Biología Vegetal (IMBIV), Universidad Nacional de Córdoba—CONICET, Casilla de Correo 495, Vélez Sarsfield 299, 5000 Córdoba, Argentina. e-mail sdiaz@com.unecor.com

Amy Downing, Department of Ecology and Evolution, The University of Chicago, 1101 E. 57th Street, Chicago, IL 60637, USA. e-mail adowning@midway.uchicago.edu

Mark Emmerson, Department of Biology, University of York, P.O. Box 373, York YO10 5YW, UK. e-mail mce1@york.ac.uk

Katia Engelhardt, University of Maryland, Center for Environmental Science, Appalachian Lab, 301 Braddock Road, Frostburg, MD 21532-2307, USA. e-mail engelhardt@al.umces.edu

Mark Gessner, Department of Limnology, Limnological Research Center, 6047 Kastanienbaum, Switzerland. e-mail mark.gessner@eawag.ch

Paul Giller, University College Cork, Department of Zoology, Lee Maltings Prospect Row, Cork, Ireland. e-mail deanofscience@ucc.ie

Andrew Gonzalez, Laboratoire d’Ecologie, Ecole Normale Supérieure, 46 rue d’Ulm, Paris 75005, France. e-mail gonzalez@wotan.ens.fr

Bryan Griffiths, Scottish Crop Research Institute, Invergowrie, Dundee DD2 5DA, UK. e-mail B.Griffiths@scri.sari.ac.uk

Philip Grime, Unit of Comparative Plant Ecology, Department Animal & Plant Sciences, University of Sheffield, Sheffield S10 2TN, UK. e-mail j.p.grime@sheffield.ac.uk

Andy Hector, NERC Centre for Population Biology, Imperial College at Silwood Park, Ascot, Berkshire GB-SL5 7PY, UK. e-mail a.hector01@ic.ac.uk

Katarina Hedlund, Department of Ecology, Lund University, Sölvegatan 37, S-22362 Lund, Sweden. e-mail Katarina.Hedlund@zooekol.lu.se

Sarah E. Hobbie, Department of Ecology, Evolution, and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul MN 55108, USA. e-mail shobbie@umn.edu

David Hooper, Department of Biology, Western Washington University, Bellingham, WA 98225-9160, USA. e-mail hooper@biol.wwu.edu

Jennifer B. Hughes, Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, USA. e-mail Jennifer Hughes@brown.edu

Florence Hulot, University of Amsterdam, Faculty of Science, Aquatic Microbiology—IBED, Nieuwe Achtergracht 127, NL-1018 WS Amsterdam, The Netherlands. e-mail fhulot@science.uva.nl

Michael Huston, Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6355, USA. e-mail hustonm@ornl.gov

Mark Huxham, Napier University, School of Life Sciences, 10 Colinton Road, Edinburgh, Scotland EH10 4NY, UK. e-mail m.huxham@napier.ac.uk

Pablo Inchausti, Laboratoire d’Ecologie, Ecole Normale Supérieure, 46 rue d’Ulm, Paris 75005, France. e-mail inchausti@biologie.ens.fr
David Tilman, Department of Ecology, Evolution and Behavior, University of Minnesota, 1987 Upper Buford Circle, St. Paul, MN 55108-6097, USA.
e-mail tilman@umn.edu

Marcel van der Heijden, Department of Systems Ecology, Free University, De Boelelaan 1087, 1081 HV Amsterdam, The Netherlands.
e-mail heijden@bio.vu.nl

Wim van der Putten, Department of Multitrophic Interactions, NIOO-CTO, P.O. Box 40, 6666 ZG Heteren, The Netherlands.
e-mail putten@cto.nioo.knaw.nl

Liesbeth van Peer, Research Group of Plant and Vegetation Ecology, Department of Biology, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium. e-mail Ivanpeer@ua.ua.ac.be

John Vandermeer, Department of Ecology and Evolutionary Biology, 830 North University, Natural Science Building (Kraus), University of Michigan, Ann Arbor, MI 48109-1048, USA. e-mail jvander@umich.edu

Montserrat Vilà, Centre de Recerca Ecològica i Aplicacions Forestals, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain.
e-mail vilac.cc.uab.es

Dave A. Wardle, Department of Animal and Plant Science, University of Sheffield, Alfred Denny Building, Sheffield, S10 2TN, UK.
e-mail d.wardle@sheffield.ac.uk

David Wedin, School of Natural Resource Sciences, University of Nebraska, 104 Plant Industry, Lincoln, NE 68583-0814, USA.
e-mail dwedin1@unl.edu

Volkmar Wolters, Department of Animal Ecology, Justus-Liebig-University, Heinrich-Buff-Ring 26-32 (IFZ), 35392 Giessen, Germany.
e-mail Volkmar.Wolters@allzool.bio.uni-giessen.de
PART I

Introduction
CHAPTER 1

Biodiversity and ecosystem functioning: the emergence of a synthetic ecological framework

S. Naeem, M. Loreau, and P. Inchausti

1.1 Understanding the significance of biodiversity

Earth’s biota is not a passive epiphenomenon of Earth’s physical conditions and geochemical processes. Through the collective metabolic and growth activities of its trillions of organisms, Earth’s biota\(^1\) moves hundreds of thousands of tons of elements and compounds between the hydrosphere, atmosphere, and lithosphere every year. It is this biogeochemical activity that determines soil fertility, air and water quality, and the habitability of ecosystems, biomes, and ultimately the Earth itself (Lovelock 1979; Butcher et al. 1992; Schlesinger 1997). Indeed, biogeochemistry makes Earth a unique planet in the solar system (Ernst 2000).

While the functional\(^2\) significance of Earth’s biota to ecosystem or Earth-system functioning is well established, the significance of Earth’s biodiversity\(^3\) has remained unknown until recently. For example, we have a well-developed understanding of photosynthetic production at minute (e.g. subcellular) scales (Hall et al. 1993) and a well-developed understanding of primary productivity at global scales (Roy et al. 2001), yet we have, by comparison, little understanding of how plant diversity in a grassy meadow, desert, or forest affects production at the ecosystem, biome, or global scale.

At a time when biodiversity is undergoing dramatic changes in distribution and abundance (Ehrlich 1988; Wilson 1988; Soulé 1991; Reaka-Kudla et al. 1997; Stork 1997), predicting the ecosystem or Earth-system consequences of such change is a critical issue (Ehrlich and Wilson 1991; Chapin III et al. 2000). At a conference in Bayreuth, Germany, organized by E.-D. Schulze and H. A. Mooney in 1991, the proceedings of which were published in 1993 (Schulze and Mooney 1993), ecologists formerly reviewed what was known about the relationship between biodiversity and Earth-system and ecosystem functioning (henceforth, ‘biodiversity-functioning’ research). Since then, this focus has become a major thrust in contemporary ecology, reflecting a modern synthesis in which the study of biodiversity (e.g. distribution and abundance) is merged with the study of ecosystem functioning (e.g. biogeochemical processes). H. A. Mooney (Chapter 2) traces the events that led to this 1991 symposium and the explosion of research that followed shortly after its publication.

Although the studies that have contributed to this discipline represent a broad array of individuals and their collective expertise, a considerable amount of debate has arisen concerning its findings (André et al. 1994; Givnish 1994; Aarssen 1997; Garnier et al. 1997; Grime 1997; Huston 1997; Tilman et al. 1997a; Wardle et al. 1997b, 2000b; Hector 1998; Hodgson et al. 1998; Lawton et al. 1998; Loreau 1998b; Loreau et al. 1998b; Loreau et al. 1999; Loreau et al. 2002).

\(^1\) By ‘biota’ we mean all biological entities in a habitat, ecosystem, or larger region, independent of its diversity.

\(^2\) By ‘functional’ or ‘functioning’, we mean the activities, processes, or properties of ecosystems that are influenced by its biota. In no case is ‘purpose’ inferred in our usage of these terms.

\(^3\) ‘Biodiversity’ refers to the extent of genetic, taxonomic, and ecological diversity over all spatial and temporal scales (Harper and Hawksworth 1995).

A conference held in Paris, France, in December 2000, entitled *Biodiversity and ecosystem functioning: synthesis and perspectives* (henceforth, the Synthesis Conference), brought together researchers representing the full gamut of expertise and opinion on the empirical and theoretical foundations of biodiversity-functioning research. This volume is the outcome of that conference (see Preface), and this chapter provides a brief review of the topic and the content of this volume.

1.2 A brief history of biodiversity and ecosystem functioning

1.2.1 Early history

Initially, there may have been little question concerning the relationship between biodiversity and ecosystem functioning, though the perspective was predominantly one of metaphysical harmony among species and their environment (Egerton 2001). For example, Aristotle (384–322 BC) considered all entities to be made up of five elements (earth, fire, water, air and a fifth element known as the ether or the *quinta essencia*). Thus organisms, habitat, and environment were seen as one and it would likely have been an uninteresting question to ask if biodiversity and ecosystem functioning were related. This powerful construct endured nearly 2000 years until the scientific revolution of seventeenth-century Europe. While the positive aspects of the revolution are well documented, the abandonment of Aristotelian thinking fractionated the sciences, and natural history in particular underwent considerable transformation (Henry 1997). This hindered progress in biodiversity-functioning research, which requires multi-disciplinary approaches that integrate across such fields as botany, zoology, microbiology, chemistry, physics, and geology, to name just a few.

Today, ecologists and environmentalists understand that environment and habitat are the endpoints of the collective activities of abiotic and biotic processes shaped by history. The biosphere is recognized as a vast, staggeringly complex, highly dynamic system made up of some 10–100 million species that share over 3.5 billion years of history and currently occupies virtually all $5.10 \times 10^{14} \text{ m}^2$ of the Earth’s terrestrial and aquatic surfaces. Clearly, to understand the functioning of Earth systems requires not only understanding biogeochemistry, but also the role that biodiversity plays in this complex system.

In spite of its rapid growth, however, the inclusion of biodiversity in Earth-system and ecosystem science has only recently become a growing part of ecological research (Mooney, Chapter 2). This lack of inclusion most likely stems from the fact that ecology has been historically divided primarily into two disciplines: community ecology and ecosystem ecology (Likens 1992; Grimm 1995; Loreau 2000b; Loreau et al. 2001). Community ecology focused on how extrinsic factors such as climate, disturbance, or site fertility affect biodiversity and how intrinsic factors affect biodiversity dynamics. In contrast, ecosystem ecologists have focused on the rates, dynamics, and stability of energy flow and nutrient cycling within ecosystems. Over the last decade, however, synthetic studies that consider both biodiversity and ecosystem functioning have grown to become an integral part of the ecological literature (Fig. 1.1).

Like much of science, however, if one searches, earlier works that predate current activities are often found. For example, the importance of atmospheric greenhouse gases in climate was recognized by Jean-Baptiste Fourier in 1827 (Houghton 1997) and the logistic model was first described by Pierre-François Verhulst in the 1830s. Similarly, Darwin himself (McNaughton 1993) and the ecological

4. *Biosphere* is the global domain within which biodiversity is found. This domain is located between the Earth’s lithosphere and atmosphere, occupying a layer that includes parts of the atmosphere, hydrosphere, and lithosphere.

5. By ‘extrinsic’ we mean primarily abiotic processes such as disturbance and climate.

6. By ‘intrinsic’ we mean biotic factors such as biotic interactions (e.g. competition, predation, mutualism) or community structure (e.g. the type, strength, and number of biotic interactions among species in a community that often describe webs or networks of material and energy flow among species).
1.2.2 The central hypothesis of biodiversity and ecosystem functioning

The Bayreuth conference formally identified the central idea that was graphically portrayed by Vitousek and Hooper (1993) in their contribution to the symposium and has since expanded to an extensive list of hypotheses (Schläpfer and Schmid 1999). On the surface, it is a relatively simple idea with only two points in a bivariate plane that describe the central idea (Fig. 1.2). The axes defining the plane are biodiversity on the x-axis as the independent variable and some ecosystem process on the y-axis as the dependent variable. The first point of interest is the point at or near zero biodiversity. If there is no biodiversity (e.g. no plants) there is no ecosystem functioning (e.g. no production). The second point is the natural level of biodiversity where there is a highly predictable amount of functioning. The central question concerns what the trajectory might look like for a particular function for a given variation in biodiversity away from the second point. For example, what are the ecosystem consequences (the shape of the trajectory in the bivariate space) of local extinction (biodiversity loss, moving to the left of the second point) or invasion (biodiversity augmentation, moving to the right of the second point)?

When ecologists were asked what the shape of the trajectory might be (though the emphasis has traditionally been on biodiversity loss) a wonderful breadth of ideas emerged (Schläpfer and Schmid...
In fact, this bivariate space is packed with well over 50 different hypotheses concerning the ecosystem consequences of biodiversity loss. Three classes of biodiversity-functioning hypotheses can be identified.

1. Species are primarily redundant. Hypothetical trajectories in which the major portion is insensitive or flat to variation in biodiversity imply that loss of species is compensated for by other species or the addition of such species adds nothing new to the system.

2. Species are primarily singular. Hypothetical trajectories in which slopes are predominantly positive or negative imply that species contribute to ecosystem functioning in ways that are unique, thus their loss or addition causes detectable changes in functioning. Keystone species are often cited as examples of singular species.

3. Species impacts are context-dependent and therefore idiosyncratic or unpredictable. Hypothetical trajectories that exhibit a variety of different slopes over different portions of their trajectory fall into this category. In such cases, the impact of loss or addition of a species depends on conditions (e.g. community composition, site fertility, disturbance regime) under which the local extinction or addition occurs.

Biodiversity-functioning research frequently uses terminology associated with these classes of hypotheses. The ‘Rivet’ hypothesis, accredited to Paul and Anne Ehrlich, reflects the notion that redundancy is important to a point where once so many species are lost, the system fails, much the way an engineered system fails when it looses too many rivets. The ‘Redundancy’ hypothesis refers to an asymptotic trajectory that asymptotes at extremely low levels of diversity. The ‘Keystone’ species refers to a trajectory in which functioning plummets as soon as biodiversity declines from its natural levels. The ‘Idiosyncratic’ hypothesis is the label ascribed to a trajectory that exhibits no clear trend. In many cases, an idiosyncratic response is expected only when diversity is extremely low and each deletion or addition is the equivalent of adding Keystone species or groups. There is some confusion over the interpretation of this hypothesis for two reasons. First, the Idiosyncratic hypothesis applies to biodiversity loss in which a single specific pattern of loss occurs (e.g. loss of species A, then B, then C, and so on). In most experiments, however, biodiversity loss is treated as random losses of species with replicates representing different combinatorial permutations (e.g. loss of A or B or C followed by loss of A and B or B and C or C and A, and so on) and the trajectory plots the average change in functioning in response to the random biodiversity loss. The second common error is to associate the Idiosyncratic hypothesis with an inability to reject the null hypothesis or the hypothesis that the slope of the relationship is indistinguishable from zero (the absence of any evidence that biodiversity drives ecosystem functioning). Idiosyncratic does not mean that there is no effect of variation in biodiversity nor does it necessarily imply that response to variation in diversity is unpredictable. It merely implies that the slope of the relationship is not monotonic.

1.3 Articulating the hypothesis

The hypotheses outlined in Fig. 1.1 represent a heuristic framework that serves to organize our thoughts about the relationship between biodiversity and ecosystem functioning. It also provides a clear picture of what needs to be tested—reject the null hypothesis of no relationship between biodiversity as an independent variable and ecosystem functioning as a dependent variable.

New ideas are tested primarily by ‘articulating the hypothesis’ (Kuhn 1962) and experiments that followed the Bayreuth conference did exactly that. They created a gradient in biodiversity under homogeneous extrinsic conditions (e.g. fertility, climate, space, history) and monitored a variety of functions as response variables. Subsequent experiments, all of which are reviewed in this volume, added additional dimensions or searched for mechanisms.
The first such experiment designed to articulate the hypothesis was conducted in the Ecotron (Naeem et al. 1994a, 1995), a controlled environmental facility designed for ecological research (Lawton et al. 1993). It established replicates of high-, intermediate-, and low-diversity, terrestrial ecosystems. Thus, each level represented increasingly depauperate versions of the highest diversity level. It also simultaneously established 164 combinations of the 16 species of plants used in the main experiment at constant densities (16 individuals per pot) following a combinatorial design (Naeem et al. 1996). Its initial report (Naeem et al. 1994a) concluded, ‘Our study demonstrates for the first time under controlled environmental conditions, that loss of biodiversity, in addition to loss of genetic resources, loss of productivity, loss of ecosystem buffering against ecological perturbation, and loss of aesthetic and commercially valuable resources, may also alter or impair the services that ecosystems provide. However, different ecosystem processes respond differently to loss of biodiversity providing some support for several current hypotheses. To the extent that loss of plant biodiversity in the real world means a reduction in the ability of ecosystems to fix CO₂, we also tentatively conclude that the loss of diversity may reduce the ability of terrestrial ecosystems to absorb anthropogenic CO₂.’

The Ecotron study effectively demonstrated that the relationship between diversity and ecosystem functioning was not flat. It hypothesized that niche complementarity, or a greater efficiency of light utilization in more diverse communities due to differences in growth forms among species, was the mechanism responsible for the observed positive relationship between diversity and production. It also emphasized that processes varied in response and that other factors in nature contribute to biodiversity-functioning relationships and the value of biodiversity.

Early experiments attract considerable attention in science and the Ecotron study was no exception (Moore 1996). While it successfully articulated the hypotheses, however, its design in which lower levels of diversity were nested sets of higher levels, could not address many issues that would emerge as biodiversity-functioning research evolved (Lawton et al. 1998; Allison 1999).

Two influential early studies by Tilman and colleagues would focus biodiversity-functioning on plant diversity and plant production and this focus would dramatically increase the visibility of biodiversity and ecosystem functioning research. They would also catalyse emerging debates over the interpretation of biodiversity-functioning studies. The first paper, by Tilman and Downing (1994), reported that nitrogen-induced reductions in plant diversity lowered ecosystem resistance and resilience. Later, Tilman et al. (1996) reported that controlled variation in plant diversity was positively associated with production in experimental prairie grassland plots. The larger spatial and temporal scales of these experiments and their outdoor or field nature provided greater assurance that the findings were more applicable to natural systems than the short-term, growth-chamber studies of the Ecotron. The proposed mechanism was again niche complementarity, either for nitrogen or water use, rather than light as was proposed in the Ecotron study.

From these experimental beginnings, only six years ago, an explosion of research ensued that, in each case, added important dimensions to the expanding field of biodiversity-functioning research. McGrady-Steed et al. (1997) manipulated diversity across a range of autotrophic and heterotrophic species using microbial microcosms. This study would also be the first to examine invisibility as an ecosystem property associated with biodiversity. Naeem and Li (1997) would similarly use microbial microcosms, this time manipulating the number of species per functional group. Hopper and Vitousek (1997) would manipulate functional diversity while Tilman et al. (1997a) would manipulate both species and functional group richness.

Many experimental studies followed, in each case adding more dimensions. Some hallmark

10 ‘Niche complementarity’ refers to the greater efficiency (in space or over time) of resource use by a community of species whose niches are complementary (i.e. non-overlapping). For example, a community of shallow-rooting and deep-rooting plant species mines mineral nutrients in a fixed volume of soil better than either group does by itself.

11 ‘Functional group’ refers to a set of species that are similar, and at least partially substitutable in their contribution to a specific ecosystem process (see Hooper et al., Chapter 17).
contributions include Van der Heijden et al. (1998a,b) who examined mycorrhizal fungal diversity, and Hector et al. (1999) who examined within-site and across-site biodiversity-functioning relationships, and Sankaran and McNaughton (1999) who examined extrinsic factors. The explosion of research has gone on to tackle other dimensions such as different systems, like wetlands (Engelhardt and Ritchie 2001) or marine systems (Emmerson et al. 2001), or the role of producer–decomposer interactions (Naem et al. 2000a), nutrients (Hulot et al. 2000), invasive species (Knops et al. 1999; Levine 2000b; Naem et al. 2000b), and plant pathogens and insect diversity (Siemann 1998; Knops et al. 1999). Many other studies are reviewed in the following chapters.

1.3.1 Theoretical developments

Theory lagged slightly behind the experimental work in biodiversity-functioning research. While the earliest ideas can be traced to McNaughton (1977) and intercropping theory (Vandermeer 1989), models developed explicitly to address biodiversity-functioning really did not emerge until recently (Loreau et al., Chapter 7). Tilman et al. (1997a) and Loreau (1998a–c) contributed early models exploring how competition for resources and niche complementarity could explain the relationship between plant species richness and plant production based on plant resource use models. Doak et al. (1998) made a significant contribution by arguing that statistical averaging could account for apparent stabilization of aggregate community properties (i.e. ecosystem processes) without invoking niche complementarity. Yachi and Loreau (1999) would introduce a mathematical formalization of the concept of biological insurance. Naem (1998) would introduce the concept of ecosystem reliability. Hughes and Roughgarden (1998) would examine how interaction strengths affected biodiversity-functioning relationships. As in the experimental studies, theoretical studies began focusing on the initial issues raised by the experiments that articulated the central biodiversity-functioning hypothesis, but theory has grown to cover increasingly sophisticated topics.

1.3.2 How best to interpret the findings?

Two fundamental issues concerning the interpretation of biodiversity-functioning arose shortly after the publication of the early studies. First, given the weight of correlational studies that suggested contrary patterns of association between plant diversity and production or other ecosystem processes, it seems unlikely that patterns observed in biodiversity-functioning experiments are relevant in the face of overwhelming influences of extrinsic factors (Grime 1997; Wardle et al. 1997b). Second, it is difficult to separate effects due to the increasing probability that species with major impacts on whatever process is being measured are present in higher diversity experiments (the sampling effect) from effects due to niche complementarity (Aarsen 1997; Huston 1997; Wardle 2001). Additional issues such as the role of the below-ground community (Wardle et al. 2000b), the possibility that functional diversity is far more critical than species diversity (Hooper and Vitousek 1997, 1998), and the fact that higher diversity replicates are more similar to one another in composition than lower diversity communities were also raised (Wardle 1998; Fukami et al. 2001).

Although each query was met with a rebuttal by the authors of the biodiversity-functioning studies, the replies were deemed inadequate by those who disagreed with the interpretation of the findings. This is often the case in science—interpretation of results can vary dramatically among researchers. Often an experiment is deemed ‘flawed’ by those who disagree with the original author’s interpretation, while the original authors see their rebuttals as satisfying the concerns raised and continue to perceive the original studies to be correct. Such exchange is commonplace in science although the tone of the debate in this instance was regrettable and led to negative effects when reported in the press (Mooney, Chapter 2).

1.3.3 The consequences of debate among researchers: the science/public disconnect

Given the excitement generated by the early findings, the ensuing explosion of research by a wide array of researchers, the fact that only a fraction of
the studies were under criticism, the fact that the criticisms were being incorporated into the discipline, and the importance of the issues, it may seem surprising that the emerging debate wound up being reported by the press to represent the signs of a questionable science. A couple of selected quotes from the press convey this.

A long-simmering debate among ecologists over the importance of biodiversity to the health of ecosystems has erupted into a full-blown war. Opposing camps are duelling over the quality of key experiments, and some are flinging barbs at meetings and in journals.

Kaiser (2000)

The altercation went public when, in a letter in the July issue of the Bulletin of the Ecological Society of America, eight ecologists bluntly charged that the report was ‘biased’ and ‘little more than a propaganda document’; made ‘indeensible statements’; and set a ‘dangerous precedent’ for scientific societies by presenting only one side of the debate, even though the report seemed to represent the entire 7,600-member society.

Gutterman (2000)

In reality, there is no scientific discipline that is without its debate unless it is a stagnant discipline. The more dynamic, the more rapidly a discipline is evolving, the more it is surrounded by vigorous debate. The greatest advances in science are often surrounded by the most vigorous debates (Hellman 1998).

The direction science takes follows the weight of the evidence without waiting for debate to be resolved. Public debate, however, does not operate in this fashion. In a public debate, evidence is presented by both sides and juries, judges, or oracles decide which side is right and which wrong (Franklin 2001). In a court of law, in the press, or in a public debate, each party is accorded equal privileges. Each side may identify witnesses, assemble evidence, or elect representatives to present their case. Judgment is based on the persuasiveness of the different arguments to juries, tribunals, judges, other empowered individuals, or by the public who pass judgment individually or collectively by vote.

Scientists, if they turn to the public, are often not familiar with the way it handles evidence (Mooney, Chapter 2). As the science of ecology increasingly enters the public and policy arena, it may increasingly find that scientific debate may be misunderstood much the way Creationists in the United States continue to use the debate in evolutionary biology to dismiss its findings. Synthetic approaches, however, can allow progress in scientific research while minimizing debate.

1.4 The Synthesis Conference: a critical phase in biodiversity-functioning research

The debate helped to crystallize several issues that served as guideposts for future directions in biodiversity-functioning research and motivated the Synthesis Conference. The first set of chapters (Chapters 3–6) highlight the core issues in the debate over the appropriate interpretation of biodiversity and ecosystem functioning research focusing primarily on the Cedar Creek and BIODEPTH grassland experiments. With these issues in mind, the remaining chapters explore how biodiversity and ecosystem functioning touches upon ecological stability, trophic levels and structure, and other dimensions in ecology.

In the first section, Tilman et al. (Chapter 3), using the Cedar Creek studies, and Hector et al. (Chapter 4), using the BIODEPTH studies, extensively analyse data from these experimental grassland systems to explore the relative contributions of different mechanisms to the biodiversity-functioning relationships. They interpret their evidence as a strong support to their original conclusions about the importance of niche complementarity and plant diversity in governing the positive plant biodiversity-production relations observed in these studies, but their more modern synthetic approach treats these effects as the result of multiple causes that include sampling, facilitation, and perhaps other causes. Schmid et al. (Chapter 6) detail the astonishing complexity involved in analysing such data, focusing on the dominant parametric statistical approaches employed in these studies. In contrast, Huston and McBride (Chapter 5), while allowing for the importance of diversity to ecosystems in general, nevertheless criticize the biodiversity-functioning programme. They argue that a variety of statistical problems limit the interpretation of current biodiversity-functioning studies and provide alternative interpretations of current findings.
While these first chapters underscore the complexities one encounters in biodiversity-functioning research, the remaining sections consider the broader scope of biodiversity’s potential role in a variety of ecological processes. The second section revisits the stability-diversity debate beginning with Loreau et al.’s Chapter 7 that contrasts and compares traditional research in ecological stability with the emerging biodiversity-stability research. This new stability research, unlike its predecessor, explicitly addresses the links between species variability and the variability of aggregate ecosystem properties and shows how population responses to environmental fluctuations and evolutionary modifications provide new insights into this venerable issue. Hughes et al. (Chapter 8) derive the core theoretical foundations behind recent theoretical approaches that attempt to understand the relationship between biodiversity and variance in ecosystem properties. De Ruiter et al. (Chapter 9), focusing on the enormously complex belowground systems, emphasize that biodiversity may play important roles in a variety of unexpected ways, in system stability. Finally, Levine et al. (Chapter 10) examine how biodiversity contributes to invasibility, an aspect of stability first addressed by Elton (1958). Levine et al. contrast how biodiversity and the covarying extrinsic determinants of biodiversity determine ecosystem invasibility. These chapters clear up the misleading sense of déjà vu that some may have felt in the face of what appeared to be a re-emergence of the old stability-diversity debate.

The next section explores systems other than grassland plant communities, with an emphasis on the trophic dimension of biodiversity-functioning research. The role of trophic groups, trophic structure, food chains and food webs remains among one the largest issues in ecology, yet the role of the trophic dimension in biodiversity-functioning research has only recently begun to catch up with the progress made in plant studies. Petchey et al. (Chapter 11) explore the utility of microcosm research and review key microcosm experimental studies in this context, pointing to their value as proving grounds for otherwise empirically intractable theory that often calls for high levels of replication and many generations. Emmerson et al. (Chapter 12) shed what light they can on the role of biodiversity in marine ecosystems given the paucity of marine biodiversity-functioning studies, emphasizing the importance of trophic groups and heterotrophic processes in these systems. Raffaelli et al. (Chapter 13) address the fact that linkages among species created by common energy and nutrient pathways mean that changes in one species invariably, either directly or indirectly, have impacts on others. These linkages generate patterns in distribution and abundance, feedback in population cycles, and determine the fate of energy and nutrient flow in ecosystems.

Nowhere else is the importance of these trophic linkages more clear than in below-ground or the decomposer subsystems where >90% of the energy that flows through an ecosystem ultimately passes. In fact, including de Ruiter et al. (Chapter 9), four chapters in this volume examine this subsystem. Wardle and van der Putten (Chapter 14) document the lack of evidence for biodiversity-functioning relationships in decomposer systems. A key issue raised in this chapter concerns the sensitivity of ecosystems to extrinsic factors, suggesting that extrinsic factors, not intrinsic factors (i.e. biodiversity), regulate functioning. Mikola et al. (Chapter 15) argue, based on many experimental and observational studies, that biodiversity is hardly likely to provide the kinds of relationships one has observed in contemporary biodiversity-functioning studies of grassland plots and microcosm experiments when it comes to below-ground communities. Thus, they second the cautionary message delivered by Wardle and van der Putten. Finally, van der Heijden and Cornelissen (Chapter 16) focus on the often-neglected symbiotic microorganisms that are common (up to 80%) associates of terrestrial plants emphasizing that diversity of these organisms may play important roles in governing above-ground production and carbon cycling.

The trophic dimension of ecosystems, however, is only one of several ecological dimensions that biodiversity-functioning research touches upon. The challenge of addressing the taxonomic–functional diversity dimension in biodiversity-functioning research is addressed by Hooper et al. (Chapter 17). In their chapter, they demonstrate that the distinction between taxonomic and functional diversity is critical not only to resolving debates, but to making
progress in effective experimental design and policy
development. The spatial and temporal dimensions
are addressed by Bengtsson et al. (Chapter 18) who
remind us that the power of any ecological science
is its ability to provide scale-invariant principles,
but current biodiversity and ecosystem functioning
research is, to be blunt, pathetically limited in scale.
Finally, the human dimension is addressed by
Vandermeer et al. (Chapter 19), who provide several
insights into what managed ecosystems are in
comparison to unmanaged systems, how the
biodiversity-functioning debate has long been a
part of management issues, and provide a number
of valuable ways to begin the badly needed dialog
between managers and researchers.

1.5 Concluding comments

We have tried, in a limited space, to provide a brief
synopsis of the biodiversity-functioning research
programme, its central ideas, its terminology, and
the issues it contends with to facilitate the reading
of this volume for the uninitiated. We have also
indicated, though it might be surprising to some,
that the ecological consequences of changing pat-
terns in biodiversity, either through extinction or
addition, was poorly known until recently, but that
over a brief span of time (<10 years) some insights
have been derived from empirical and theoretical
studies. Not surprisingly, early studies that articu-
lated the hypotheses introduced more questions
than they addressed and the ensuing debate that
surrounded interpretations of the rapidly accumu-
ulating findings generated a sense that it was
possible that biodiversity really did not matter.

Few, however, if any would claim that there is no
role for biodiversity in ecosystem processes or
ecosystem functioning and that the ecosystem ser-
vice humans derive from them are affected by the
nature of the biota that govern these processes.
There is still a debate over the relative or specific role
of extrinsic factors, genetic, taxonomic, or functional
diversity in ecosystem processes, but the scientific
community should not ignore the issue because it is
complex, confusing, or unclear. Rather, this should
be seen as a challenge to be met. Although the
relative contribution of multiple causes to ecological
effects, such as the relative importance of soil fer-
tility and plant species richness to production, are
important and unresolved, the scientific exchange
and debates should stimulate scientists towards
resolving the issue, not deter further investigation.
A fortunate outcome of the debate is that it has
stimulated the quest for a better understanding of
mechanisms.

One thing this volume makes clear is that eco-
logical truth lies at the confluence of observation,
theory, and experiment. It is through discourse
among empiricists and theorists that findings and
theory are sorted and matched and where there is
a lack of correspondence, new challenges identi-
ified. This volume represents a critical step in this
direction.